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Foreword

Recently, the Americas, like the rest of the world, 
have seen an upswing in extreme weather events as a 
result of climate change. The numbers of injuries and 
deaths resulting from these disasters have been well 
documented, but those numbers alone do not fully 
capture the myriad ways in which climate change has 
affected and will continue to affect human health.

To date, the health sector has been the focus of 
national, regional, and global policy changes to reduce 
the possible direct and indirect effects of climate 
change. The emphasis on protecting human health must 
continue and increase as we move forward.

In 2019 the European Academies’ Science Advisory 
Council (EASAC) produced their report “The imperative 
of climate action to protect human health in Europe”. 
Subsequently, the InterAcademy Partnership (IAP) 
sponsored the other regional networks (Africa, the 
Americas, and Asia) to prepare similar documents.

In this report, prepared by the Inter-American Network 
of Academies of Sciences (IANAS), we consider how, 
through adaptation and mitigation, we can combat the 
negative effects of climate change on health, and also 
how we can reduce the ways in which the health system 
itself contributes to the problem of climate change.

As we have seen with the COVID-19 pandemic, the 
effects of climate change disproportionately impact 
the health of Indigenous Peoples, aging populations, 
children, women and girls, those living in challenging 

socioeconomic settings, and geographically vulnerable 
populations. Their voices must be heard, and as we 
advance with preparedness and robust response 
planning it is essential that issues of equity and social 
justice are incorporated.

This publication is one of several prepared for a 
project by the German National Academy of Sciences 
Leopoldina and the InterAcademy Partnership. Funding 
was provided by the German Federal Ministry of 
Education and Research. We would like to thank all 
those scholars who contributed to this volume either 
as authors or reviewers, as well as IAP, IANAS, and RSC 
secretariats for their unwavering support during the 
preparation and diffusion of this report.

Helena Nader Jeremy N. McNeil Sherilee Harper
IANAS Co-chair IANAS Co-chair Project leader

The InterAcademy Partnership (IAP) has more than 
140 national, regional, and global member academies 
who work together to support the vital role of science 
in seeking evidence-based solutions to the world’s most 
challenging problems.

The Inter-American Network of Academies of 
Sciences (IANAS) is a regional network with 24 national 
or regional academies that was created to support 
cooperation towards the strengthening of science 
and technology as a tool for advancing research and 
development, prosperity, and equity in the Americas.
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Summary

Climate change is impacting health now

Climate change is affecting the Americas. We have 
already experienced record-breaking increases in 
mean and extreme temperatures, lengthened wildfire 
seasons, increased intensity and frequency of extreme 
precipitation and floods, ocean warming, permafrost 
thaw, increased drought, increased aridity, sea level rise, 
and coastal flooding and erosion. The impacts of these 
events have widespread and sweeping implications for 
the entire planet, presenting an urgent global public 
health challenge.

This report focuses on the ways in which climate change 
is affecting human health throughout the Americas. 
The report documents how climate change is increasing 
heat-related morbidity and mortality, increasing air 
pollution-related disease and death, threatening 
nutrition and food security, challenging mental health 
and wellbeing, damaging respiratory health, and 
increasing the incidence and prevalence of waterborne, 
foodborne, and vector-borne illnesses throughout the 
Americas (Figure 1).

The report assesses options for reducing the impacts 
of climate change on human health. It offers 
recommendations for climate-resilient pathways forward 
that are transdisciplinary in structure and underpinned 
by principles of equity, human rights, and social justice.

Climate change converges with and compounds 
other health crises

This report comes at a time when the effects of the 
climate crisis on human health have converged with the 
effects of the COVID-19 pandemic. Over the past two 
years, health systems have had to respond to COVID-19 
as well as the impacts of record-breaking heatwaves, 
intense storms and disasters, and wildfires. For example, 
in July 2020 Hurricane Hanna made landfall in southern 
Texas at a time when the state was experiencing the 
highest COVID-19 hospitalization incidence in the 
United States. Efforts to evacuate and provide shelter for 
people while simultaneously limiting viral transmission 
presented difficult logistical challenges, and residents 
who chose not to evacuate due to fear of COVID-19 
increased their risk of injury and drowning.

Both crises are pertinent reminders of how the 
interconnectedness of social, environmental, and 
climatic factors have exacerbated existing social and 
health inequities. Many factors that increase vulnerability 
to climate change impacts, such as age, sex and gender, 
socioeconomic status, and environmental degradation, 
also increase vulnerability to COVID-19. Thus, it is 

essential that we move forward with preparedness and 
robust response planning that consider and incorporate 
issues of equity and social justice.

Climate change action will improve human health 
in the Americas

Health systems must coordinate with other sectors 
to adapt to climate change

Climate change has already negatively impacted health 
in the Americas. In this report, we address how our 
health systems can adapt to cope with current and 
expected climate change and simultaneously reduce 
harmful health impacts through both adaptation 
and mitigation efforts. Examples of climate change 
adaptations include the following: (i) raising public 
awareness of climate–health risks including improved 
climate–health education in schools; (ii) developing 
heat action plans; (iii) modifying the built environment 
to cope with higher temperatures; (iv) explicitly 
incorporating health provisions into disaster risk 
management plans; (v) establishing and frequently 
testing early warning and response systems; (vi) 
incorporating mental health impacts into disaster risk 
management; (vii) developing integrated environment 
and health surveillance and response systems; and (viii) 
improving access to key services, including improved 
water, sanitation, and hygiene systems. Importantly, 
when developing adaptation strategies to reduce the 
health impacts of climate change, it is essential that the 
health sector coordinates its efforts with other sectors, 
including water and sanitation, energy, food production, 
transportation, housing, education, and land-use 
planning.

The Americas need adaptation strategies, policies, 
programs, and the finances to build climate-resilient 
and environmentally sustainable health and healthcare 
systems. This report outlines how assessments of the 
vulnerability of regions, populations, and individuals, 
as well as evaluations of the capacity of governments, 
organizations, and individuals to prepare for and 
manage changes in the magnitude and pattern 
of risks, have been used to establish a knowledge 
base of current and projected climate–health risks in 
the Americas. These assessments are important for 
informing the health components of national adaptation 
plans (HNAPs), Nationally Determined Contributions, 
and other key climate change planning, programming, 
and response policies.

But there are limits to our ability to adapt to future 
climate change, as currently effective adaptations 
may become inadequate over the medium to longer 
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thereby placing stress on health systems already facing 
capacity constraints or on those not yet equipped to 
manage those diseases. Similarly, if average global 
temperature increases exceed 2°C, outdoor workers 
in several Latin American countries could experience 
extreme heat conditions that exceed the threshold for 
safe moderate physical labor during the hottest months 
of the year. These impacts are likely to increase poverty 
and inequities, with the potential to undermine or 
reverse previous gains made towards the United Nations 
Sustainable Development Goals.

term. Furthermore, it is critical to understand that 
adaptations designed without sufficient attention to 
equity, and the needs of the most vulnerable, may 
increase risks or shift risks across groups. Therefore, 
this report identifies situations where health systems 
might face intolerable risks due to the extent of climate 
change alone or in combination with physiological, 
institutional, technological, social, behavioral, or 
economic factors. For example, climatic conditions 
could significantly change the geographic range of 
vectors carrying climate-sensitive infectious diseases, 
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Figure 1 Summary of the climate change hazards and key health impacts by location in the Americas.
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and is influenced by intersecting factors such as 
health status, social, economic, and environmental 
conditions, and governance structures. Climate change 
impacts exacerbate insecurities and injustices currently 
experienced by vulnerable populations, many of 
which are founded in injustices such as colonialism, 
racism, discrimination, oppression, and development 
challenges. This report examines climate change health 
risks for various vulnerable groups, and emphasizes 
that health-related adaptation and mitigation efforts 
must prioritize Indigenous Peoples, aging populations, 
children, women and girls, those living in challenging 
socioeconomic settings, and geographically vulnerable 
populations.

This report also highlights how the integrity and 
legitimacy of decisions made by governing bodies in 
response to climate change rely on the extent to which 
equity and justice are incorporated in decision-making 
processes and their respective outcomes. It presents 
equity and justice considerations for decision-makers, 
including distributional, procedural, capability, and 
recognition considerations in all climate–health actions.

Evidence-based recommendations support an 
emergency response to climate change

Based on the assessment and knowledge synthesis 
provided in this report, we have arrived at the following 
key conclusions:

• Climate change is already impacting everyone, 
everywhere—but the magnitude and distribution of 
those impacts vary.

• Every degree (Celsius) of climate warming matters 
in the Americas, emphasizing the importance of 
taking all possible actions to limit warming to well 
below 2°C.

• Climate change intersects with, and exacerbates, 
other global challenges such as COVID-19. The 
current pandemic has highlighted the intersections 
between climate, environment, and society, and has 
demonstrated how these factors can exacerbate 
existing health and social inequities in the Americas. 
COVID-19 also provides us with important lessons 
about responding to grand global challenges 
through cooperation and rapid mobilization at a 
large scale.

• Equity is at the core of effective responses. 
Globally, groups that are socially, politically, and 
geographically excluded are at the highest risk 
of health impacts from climate change, yet they 
are not adequately represented in the evidence 
base. Therefore, equity at the local, regional, and 
international scale must be at the forefront of 
research and policy responses moving forward.

Ambitious climate change mitigation can produce 
both immediate and long-term health benefits

There are clear benefits to drastically reducing 
greenhouse gas (GHG) emissions to meet the Paris 
Agreement targets, including reduced health risks in 
the coming decades; however, there are also immediate 
and nearer-term benefits of mitigation against climate 
change. This report provides examples of how climate 
change mitigation can improve human health and 
reduce healthcare costs here and now, providing 
decision-makers with an important rationale to take 
more aggressive action now.

• Phasing out the use of coal will produce major 
benefits for the environment and human health in 
the Americas. In addition to reducing global GHG 
emissions, coal phase-out will immediately reduce 
the burden of disease, disability, and premature 
death from air pollution-related cardiovascular 
disease, respiratory disease, lung cancer, premature 
birth, and neurodevelopmental disorders in infants 
and children.

• Road traffic currently accounts for nearly 
three-quarters of transport-related emissions, 
which, based on current trends, will only increase. 
Modifying transportation systems to reduce 
emissions can provide both environmental and 
health benefits. For example, the construction of 
safe, affordable, and reliable public transport systems 
and the use of active transport methods (e.g. cycling, 
walking, and running) would reduce emissions 
while providing important health benefits, including 
significant reductions in ischemic heart disease, 
cerebrovascular disease, depression, and diabetes.

• The food production system contributes an 
estimated 20–30% of global GHG emissions. 
Because livestock production contributes 
substantially more to GHG emissions than 
plant-based products, this represents a critical area 
of focus for mitigation. Reducing the consumption 
of animal-based food products would also have 
health co-benefits. Diets low in red and processed 
meats and high in fruit, vegetables, and legumes 
are associated with reduced mortality and lower risk 
of cardiovascular disease, coronary heart disease, 
and colorectal cancer. However, equity and justice 
must be carefully considered in these mitigation 
efforts. Indeed, dietary transitions may not have the 
same impact, or be appropriate, in all settings.

Addressing equity and justice underpins effective 
climate change actions that improve health

Climate change affects the health of all people, but 
the burden is not distributed evenly or fairly. Instead, 
it falls most heavily on minorities, those in low 
socio-economic conditions, and the marginalized, 
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of literature is growing, and yet climate–health 
interactions are still understudied compared with 
other areas of climate research. Continuing efforts 
to build the evidence base are needed, particularly 
for regions of the Americas that are currently 
underrepresented in the literature, such as the 
Caribbean, Central America, and South America.

• Cross-sectoral and global collaboration is crucial. 
Addressing research gaps and acting on the 
current evidence base will require intersectional, 
intersectoral, and interdisciplinary approaches 
that bring decision-makers together with 
microbiologists, epidemiologists, social scientists, 
environmental scientists, engineers, economists, 
demographers, and climatologists.

• Actions taken now to build climate–health resilience 
will reduce future risks. Investing in climate-resilient 
infrastructure, programming, and healthcare 
systems will support adaptation and decrease future 
health risks from climate change.

• A “health in all policies” response will support 
climate change adaptation and mitigation actions 
to help meet the goals of the Paris Agreement, will 
have co-benefits for health, and will support the 
achievement of key international initiatives such as 
the Sustainable Development Goals and the Sendai 
Framework for Disaster Risk Reduction targets and 
priorities.

• A focus on building climate–health research 
momentum in the Americas is needed. The body 
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1 Introduction

Climate change threatens ecosystems, societies, and 
human health on a global scale and at an increasingly 
alarming rate (IPCC 2018, 2019a, 2019b). Climate 
change has already had profound impacts in the 
Americas, including increased mean and extreme 
temperatures; increased frequencies of floods and 
droughts; increased frequency of intense storms; 
shrinking of the cryosphere; and increased sea level 
rise and coastal erosion (IPCC 2021) (Table 1.1). 
These climate hazards have had substantial direct 
impacts on human health, including increased 
heat-related morbidity and mortality, as well as 
increased risk of injury and death from climate-related 
disasters. These effects may become more severe in 
coming years as climate change continues. Climate 
change-related environmental changes will also result 
in negative indirect health effects, including increasing 
undernutrition; changing ranges of and vulnerabilities 
to vector-borne, foodborne, and waterborne diseases; 
increasing wildfires, aeroallergens, and air pollution that 
increase the burden of chronic diseases; and increasingly 
widespread mental health challenges (Smith et al. 2014; 
Watts et al. 2021).

Importantly, the pathways through which climate 
change affects health are underpinned by the social 
determinants of health, which can amplify, mediate, 
or modify how the impacts of climate change are 
experienced and addressed (Smith et al. 2014). Climate 
change can act as a stress multiplier that exacerbates 
existing pressures, inequities, and injustices across and 
within systems, populations, and regions such that 
the burden of climate-related disease and death falls 
disproportionately on the poor, minorities, and the 
marginalized (Ebi 2020; Watts et al. 2018). As such, 
climate change is a grand and urgent challenge for 
health policy-makers, practitioners, and researchers in 
the Americas.

1.1 Global climate change policies and their 
relevance to human health in the Americas

Recognizing the need for an ambitious, globally 
coordinated effort to respond to the overwhelmingly 
negative impacts of climate change resulted in the 
historic Paris Agreement in December 2015. With 
signatories from 195 countries, including 33 countries in 
the Americas, the core goal of the Agreement is to limit 
average warming “well below 2°C”, and preferably to 
1.5°C above pre-industrial levels, while strengthening 
climate change resilience and adaptation (UNFCCC 
2015).

Scientific evidence makes it clear that every degree 
(°C) of global warming matters (IPCC 2018), and this 

underpins the Paris Agreement’s goal to keep global 
warming “well below 2°C” (UNFCCC 2015). The 
differentiated impacts of 1.5°C versus 2°C of global 
warming vary substantially for the Americas (Figure 
1.1), reflecting the diverse climates, ecosystems, and 
human health and population systems across this 
vast region. Furthermore, the evidence makes it clear 
that every degree (°C) of warming matters, every 
year of action or inaction matters, and every choice 
matters (IPCC 2018). For example, 420 million fewer 
people would be exposed to extreme heatwaves if 
global warming was limited to 1.5°C instead of 2°C, 
assuming vulnerability factors were held constant (IPCC 
2018). In the Caribbean, about 50% of the year is 
projected to be under warm spell conditions (i.e. the 
maximum temperature exceeds the 90th percentile for 6 
consecutive days) at 1.5°C of global warming compared 
with up to 69% of the year at 2°C of warming, relative 
to the 1971–2000 baseline (IPCC 2018). Eastern 
North America, as well as high-latitude regions such 
as Alaska and western Canada, are projected to have 
some of the largest increases in heavy precipitation 
events in the world when projections shift from 1.5 to 
2°C of global warming (IPCC 2018). These warming 
temperatures and changing precipitation patterns 
have important implications for the environment in 
the Americas. In the Arctic, a sea ice-free summer is 
expected once every 100 years with 1.5°C of global 
warming compared with once every 10 years if there is 
a 2°C increase (IPCC 2018), the consequences of which 
range from local impacts on culture and subsistence to 
international impacts that affect travel, trade, and global 
security (IPCC 2019a). In Central and South America, 
warmer and drier conditions will increase wildfires and 
drought conditions, whereas drought conditions in the 
Caribbean are projected to last on average 9% longer 
with 2°C compared with 1.5°C of warming, which has 
important implications for water security. Food security 
challenges are also projected to be prevalent throughout 
the Americas, especially in the Amazon, where food 
insecurity risks would transition from medium risk under 
1.5°C to high risk under 2°C of global warming (IPCC 
2018). Similarly, health impacts will vary under different 
levels of climate warming: for example, a 2°C increase 
will result in more heat-related mortality and morbidity 
(Ebi et al. 2018a), and an additional 10–40 million 
people will be undernourished (Hasegawa et al. 2016) 
compared with 1.5°C of warming.

Therefore, concerted and urgent mitigation efforts 
are required to minimize climate–health risks and 
achieve the Paris Agreement’s goal. Key climate change 
mitigation activities include reducing greenhouse gas 
(GHG) emissions and conserving and enhancing GHG 
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climate change will continue to impact health in the 
Americas for decades. As such, Article 7 in the Paris 
Agreement builds upon the 2010 Cancun Adaptation 
Framework, which calls for climate change adaptation 
to be addressed with the same urgency as mitigation, 
and recognizes adaptation as an issue affecting all 
nations (UNFCCC 2011). For the health sector, climate 
change adaptation efforts include actions that reduce 
exposure to risks, reduce morbidity, and prevent 
mortality.

sinks such as forests (UNFCCC 2015). These actions 
are critical if the Americas are to achieve the Paris 
Agreement goals, as approximately 25% of global GHG 
emissions are produced in the Americas, led by the 
United States (11.9% of global emissions) and Brazil 
(5.6% of global emissions) (World Bank 2016a).

Although lower levels of risk are anticipated at 1.5°C 
(IPCC 2018), even if this target is achieved through 
immediate and aggressive reductions in emissions, 

Table 1.1 A summary of observed and/or projected climate change hazards in the Americas reported by the 
Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (IPCC 2021)

Central and South America North America

Heat • Increases in mean and extreme 
temperatures

• Increases in mean and extreme temperatures
• Warming at a higher rate than the global mean in the 

Arctic

Wet and dry • Increases in extreme and mean 
precipitation in southeastern South 
America

• Decreases in precipitation and increases in 
drought in northeastern South America

• Increases in intensity and frequency 
of extreme precipitation and pluvial 
floods in southeastern South America, 
southern South America, northern South 
America, South American Monsoon, and 
northeastern South America

• Increases in agricultural and ecological 
drought in South American Monsoon, and 
southern South America 

• Increases in conditions favorable to 
wildfires in several regions 

• Increases in precipitation in eastern and central North 
America

• Decreases in precipitation in areas of the southwestern 
United States and northwestern Mexico 

• Lengthened wildfire season and expansion into tundra 
regions in the Arctic

• Decreases in aridity and dry days in the Arctic
• Intensification of water cycle and subsequent increase in 

total precipitation and heavy precipitation events in the 
Arctic

• Increases in river flooding across all of North America 
except northern Central America

• Increases in agricultural and ecological drought in western 
North America

• Increases in aridity in southwestern United States and 
northern Central America

Wind • Increases in mean wind speed and in 
wind power potential over the Amazon, 
including northern South America, South 
American Monsoon, northeastern South 
America

• Increases in frequency of the most intense tropical 
cyclones and higher rainfall on Mexico’s Pacific coast, the 
Gulf Coast, and the United States’ eastern coast

• Decreases in mean wind speed in western North America
• Decreases in wind speed over the northeast Arctic

Snow and 
ice

• Decreases in glacial volume and increases 
in permafrost thaw in the Andes Cordillera, 
resulting in reduced river flow as ice 
reserves decrease and potential high 
magnitude glacial lake outburst floods

• Increases in winter snow water equivalent in high-latitude 
regions

• Loss of almost all glacial mass in western Canada and 
western North America

• Increases in glacial loss and permafrost thaw in the Arctic
• Decreases in snow cover in the Arctic
• Decreases in coastal sea ice coverage, leading to increases 

in coastal hazards (e.g. storm surges, erosion, flooding) in 
the Arctic

Coasts • Increases in shoreline retreat in southern 
Central America, southeastern South 
America, and southern South America

• Sea level rise at a higher rate than the 
global mean in the South Atlantic and 
tropical North Atlantic, and at a slower rate 
than the global mean in the East Pacific

• Increases in shoreline propagation in 
northwest South America and northern 
South America

• Sea level rise at a higher rate than the global mean in 
subtropical North Atlantic, and at a slower rate than 
the global mean in subpolar North Atlantic and the East 
Pacific 

• Increases in episodic coastal flooding 
• Increases in shoreline retreat in northwestern North 

America, northern Central America, and the Gulf Coast
• Increases in shoreline propagation in northeastern North 

America
• Increases in Arctic coastal flooding and erosion
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Figure 1.1 A summary of the change in the temperature of the hottest days and coldest nights, and extreme precipitation for 
1.5°C versus 2°C of global warming (adapted from IPCC 2018).
GMST, global mean surface temperature.
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Figure 1.2 Climate change adaptation and mitigation are inextricably linked to all SDGs. Achieving the SDGs and maintaining 
their benefits into the future requires decision-making that considers climate change and health in all policies (adapted from IPCC 
2018).

and health-related adaptation efforts in the Americas 
far exceeds that of other regions and has increased over 
time, reaching over USD$30 per capita in 2018–2019 
(Watts et al. 2021). The integration of health aspects 
into climate planning and policies reflects a “health in 
all policies” approach to climate change action, and 
such consideration of health across all sectors can 
lead to improvements in health, health equity, and 
sustainable development (Rudolph et al. 2013; Sellers 
et al. 2019; Watts et al. 2021; WHO 2014a). This type 
of approach is crucial as the impacts of climate change 
are already challenging current progress and threaten 
to undermine, or even reverse, progress made through 
initiatives such as the Sustainable Development Goals 
(SDGs), which were established to promote health, 
prosperity, and a sustainable planet for all people. 
Climate change intersects with all SDGs (Figure 1.2), 
notably by threatening to push more people into 
poverty (SDG-1) and poor health (SDG-3), reducing food 
security (SDG-2), reducing access to safe water (SDG-6), 
and challenging sustained, inclusive, and sustainable 
economic growth (SDG-8) (United Nations Economic 
and Social Council 2020).

1.2 Climate change and inequity

The health impacts of climate change will not be 
experienced equally or equitably. Certain populations 
are at a disproportionately high risk for negative 
health outcomes due to complex interactions between 
geographical, political, and economic factors, as well 
as social determinants of health including gender. In 
particular, those living in lower income nations that 
contribute less to global GHG emissions typically bear 
a greater burden of climate-related health impacts 
(IPCC 2018). In 2016, the 31 countries classified as 

Under the Paris Agreement, each member party is 
responsible for developing and submitting Nationally 
Determined Contributions (NDCs), which provide 
a nation-specific roadmap for GHG reduction and 
adaptation responses. Many countries have outlined 
several self-determined goals, but as global progress to 
date is considered insufficient to limit warming even to 
2°C, substantial increases in government commitment 
will be required to meet the emission reduction goals 
outlined in the Agreement (UNEP 2019). Leadership  
from the Americas will be critical, given the high total  
and per capita emission levels of several countries in  
the region; for example, the United States is the second  
largest contributor to carbon dioxide (CO2) emissions  
globally, and countries such as Canada, the United  
States, Trinidad and Tobago, and Curaçao have some 
of the highest global emissions per capita (World Bank 
2016b). Some progress in the transition to cleaner 
sources of energy is being made in the region, with 
increases in the proportion of clean energy consumption 
in the residential sector, although overall reliance 
on cleaner energy sources remains low (Watts et al. 
2021). Furthermore, while emissions were driven down 
substantially in 2020 due to travel restrictions and the 
economic consequences of the COVID-19 pandemic, it is 
uncertain whether these reductions will be sustained over 
time (Watts et al. 2021).

The interconnectedness of climate change and human 
health is being increasingly recognized and incorporated 
into global climate action plans and policies, as is 
evidenced by the Paris Agreement and many subsequent 
NDCs. Indeed, relative to some other regions, the 
Americas have a high level of consideration of health 
in NDCs, with over 90% of NDCs referencing health 
(Watts et al. 2021). Furthermore, spending on health 
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for preparedness and robust response planning that 
incorporate issues of equity and social justice.

Immense resources have been, and will continue to be, 
invested in the response to COVID-19 to reduce disease 
transmission. This includes access to personal protective 
equipment and vaccines, as well as increasing funding 
to improve the capacity of health services and to 
support economic recovery (Hale et al. 2021; IMF 2021). 
The pandemic has forced governments and society at 
large to adapt to massive shifts in daily life over the 
course of a few months. These changes have not only 
emphasized the inherent vulnerabilities in societal 
structures, but have also provided an opportunity 
to invest in pandemic management and recovery 
responses that have co-benefits for climate change. For 
example, any COVID-19 recovery actions that continue 
divestment from fossil fuels and encourage investment 
in sustainable energy will not only help to avoid an 
emissions rebound but will also help to meet the targets 
outlined in the Paris Agreement (Le Quéré et al. 2021).

Immediate global participation is essential to ensure 
that policies and programming put in place to respond 
to and recover from COVID-19 also align with the 
emission reduction targets in the Paris Agreement 
(UNFCCC 2015), international commitments to establish 
universal health coverage by 2030 (UHC2030) (WHO 
and World Bank Group 2019), and the SDGs (United 
Nations 2020). Importantly, lessons learned from the 
rapid scale-up of the pandemic response can be applied 
to climate change responses, including the need for 
cross-sector collaboration and global solidarity, as 
well as consistent consideration of trade-offs, equity, 
and social and environmental justice (Klenert et al. 
2020; The Lancet COVID-19 Commissioners et al. 
2020; WHO 2020a). Additionally, economic responses 
during and post-COVID-19 can benefit health while 
also reducing GHG emissions. Such responses include 
removing subsidies that are harmful to health and/
or the environment, supporting renewable energy 
development, and considering environmental and health 
criteria when recapitalizing companies (Guerriero et al. 
2020).

The unprecedented impacts of the COVID-19 pandemic 
present an opportunity for nations worldwide to set 
themselves on a trajectory for a low carbon future with 
concurrent economic recovery. However, few countries 
have effectively utilized the trillions of dollars of stimulus 
funds made available throughout the pandemic to 
do so. According to the Greenness of Stimulus Index, 
Canada is the only country in the Americas to change 
its recovery towards more sustainable growth and 
climate resilience, whereas the United States, Mexico, 
Argentina, Brazil, and Colombia remain on a net 
negative trajectory (Vivid Economics and Finance for 
Biodiversity Initiative 2020).

low income by the World Bank accounted for less than 
0.5% of global CO2 emissions combined, whereas the 
top three emitting nations (China, United States, and 
India) combined accounted for 48.1% (World Bank 
2016a). At the same time, in low income countries, 
people exposed to climate-related disasters are six 
times more likely to be affected (e.g. injured, displaced, 
required medical attention) and seven times more likely 
to die compared with those in high income countries 
(CRED and UNISDR 2017). These disparities reflect the 
greater economic impact of climate disasters in low 
income countries, the limited health sector resources 
available, and the relatively limited capacity to invest 
in climate-resilient infrastructure and adaptation, as 
well as existing challenges related to the underlying 
social determinants of health for low income and 
disadvantaged populations (CRED and UNISDR 2017; 
WHO and Commission on Social Determinants of Health 
2008). It is precisely to address these stark disparities 
in the health impacts of climate change that the 
concept of equity is specifically referenced in the Paris 
Agreement, embedded in the context of the SDGs, and 
is a long-standing foundation of international climate 
change law (Bodansky et al. 2017).

1.3 The intersection of health crises in a global 
context

This report comes at a time when the unprecedented 
global health challenges of climate change, pollution, 
and biodiversity loss are compounded by the COVID-19 
pandemic (Case Study 1). The COVID-19 pandemic has 
had a transformative impact on all aspects of society. 
It is a pertinent reminder of the interconnectedness of 
social, environmental, and climatic factors, and how the 
intersections of these factors can exacerbate not only 
the effects of the COVID-19 pandemic but also existing 
social and health inequities (Ebi and Hess 2020; Krieger 
2020).

A clear example of a climate hazard intersecting with 
those of the COVID-19 pandemic occurred in July 
2020, when Hurricane Hanna made landfall in southern 
Texas—which at the time was experiencing the highest 
COVID-19 hospitalization rates in the United States 
(Shultz et al. 2020a). Efforts to evacuate and provide 
shelter for people while simultaneously limiting viral 
transmission presented difficult logistical challenges, 
and residents who chose not to evacuate for fear of 
COVID-19 increased their risk of injury and drowning 
(Shultz et al. 2020a). Importantly, factors that increase 
vulnerability to climate change impacts, such as age, 
gender, ethnicity, and socioeconomic status, overlap 
with those that increase vulnerability to COVID-19, with 
risks being inequitably distributed in society (Schipper 
et al. 2020). Similar layered health crises linked to 
climate-related disasters have occurred in the past 
(Ivers and Ryan 2006; Watson et al. 2007) and will 
continue to occur in the future, highlighting the need 
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Case Study 1 COVID-19 and climate change in the Americas

As communities around the world grapple with the impacts of climate change, their capacity to respond to compounding public health issues 
is compromised. The ongoing COVID-19 pandemic provides several examples of how this situation can play out. First reported in Wuhan, 
China, in 2019, COVID-19 rapidly spread around the globe through highly connected global travel networks to become the century’s first 
major pandemic. The disease reached even the remotest corners of the planet, such as the Indigenous Amazonian communities, in fewer than 
6 months (Zavaleta-Cortijo et al. 2020). COVID-19 presents an unprecedented challenge to humanity, with widespread implications for health, 
livelihoods, and wellbeing that may undermine progress towards achieving the SDGs (The Lancet COVID-19 Commissioners et al. 2020). The 
COVID-19 pandemic is exacerbating existing social, economic, and political inequalities, with marginalized and vulnerable groups experiencing 
higher burdens of cases and deaths, further widening poverty and educational gaps (Douglas et al. 2020; Krieger 2020; Nicola et al. 2020; The 
Lancet COVID-19 Commissioners et al. 2020). 

Climate change and COVID-19 are interacting in complex ways, creating compound risks through multiple pathways and further threatening 
lives and wellbeing. Climate-related factors affect the transmission of COVID-19, although in ways not yet fully understood. The survival and 
transmission of coronaviruses in the air depend on many factors, including temperature and humidity (Kubota et al. 2020; Sasikumar et al. 
2020), although non-weather factors are typically more important in explaining disease transmission (Auler et al. 2020; Bashir et al. 2020; 
Briz-Redón and Serrano-Aroca 2020; Carlson et al. 2020; Kubota et al. 2020; Méndez-Arriaga 2020; Pequeno et al. 2020; Prata et al. 2020; 
Ribeiro Ribeiro and Alves Sousa 2020; To et al. 2021; Zaitchik et al. 2020). With respect to exposure and transmission, the relative importance 
of weather directly affecting the virus versus how it changes peoples’ behaviors remains unclear. There is negligible evidence that climate 
change will directly or substantively affect COVID-19 viral transmission over time. However, there are strong correlations between exposure 
to particulate matter (PM) from fossil fuel combustion (e.g. PM2.5 (particulate matter of sub-2.5 μm size), NO2) and high COVID-19 case 
burdens and mortality (Ali and Islam 2020; Petroni et al. 2020; Salas et al. 2020b; Srivastava 2021; Wu et al. 2020b). One study suggested 
that particulate air pollution might have contributed approximately 15% (95%  confidence interval 7–33%) to COVID-19 mortality worldwide, 
and 17% (6–39%) in North America (Pozzer et al. 2020). In Europe, West Asia, and North America, as much as 70–80% of the attributable 
anthropogenic fraction of particulate matter is related to fossil fuel use, indicating a potential link between fossil fuel consumption and negative 
COVID-19 outcomes in those regions (Pozzer et al. 2020).

Climate-related extreme events across the Americas, including wildfires, hurricanes, floods, and droughts, can exacerbate vulnerability and 
undermine efforts to control the pandemic (Pei et al. 2020; Salas et al. 2020b; Walton and van Aalst 2020). Evidence on the interaction 
between climatic extremes and COVID-19 is only just emerging, with several potential discernible pathways including the following: 

• Modified disease exposure pathways. Extreme weather events result in mass displacement (e.g. evacuation, migration, mass 
sheltering), thereby introducing diseases into new regions, clustering survivors in temporary accommodation where social distancing is 
more challenging, increasing levels of social contact, and, in the case of temperature extremes, making face coverings more difficult to use 
(Li et al. 2005; Phillips et al. 2020; Salas et al. 2020b). Regular handwashing can be challenging in circumstances where clean water may 
not be widely available (Armitage and Nellums 2020). In the United States, the 2020 Atlantic hurricane season was extremely active, and 
model simulations of southeast Florida indicated possible increases in the total number of COVID-19 cases in both the origin and destination 
locations of hurricane evacuees (Pei et al. 2020). 

• Increased susceptibility to COVID-19. The indirect effects of climate-related disasters can have implications for individuals’ susceptibility 
to and the severity of COVID-19 infections. For example, exposure to smoke from wildfires in preceding months has been linked to 
increased morbidity from influenza (Landguth et al. 2020), raising concerns about increased risks of COVID-19 infections associated with 
wildfires (Kizer 2020; Xu et al. 2020a). Additionally, individuals with COVID-19-related pulmonary or cardiac impairment are more at risk for 
negative effects of wildfire-related smoke and heatwaves (Salas et al. 2020b). There is evidence of increasing wildfire activity, including in 
western North America, driven partly by climate change in combination with other anthropogenic factors (e.g. land management practices) 
(Schoennagel et al. 2017; Williams et al. 2019; Xu et al. 2020a). Several large wildfires also coincided with COVID-19 in California, western 
and central Canada, and the Brazilian Amazon. Smoke from the 2020 California wildfire season limited outdoor activities and exacerbated 
social isolation, which may have had mental health implications (Kizer 2020).

• Reduced access to healthcare services. Extreme events complicate the ability of patients with COVID-19 to seek diagnosis and access 
care, and these disasters can also lead to the failure of critical public services (e.g. disruption of power supplies and emergency services) 
(Frausto-Martínez et al. 2020; Salas et al. 2020b). 

• Compromised emergency response. Natural disasters can challenge government and public health COVID-19 responses by disrupting 
supply chains, limiting access to humanitarian aid, and reducing the number of mobilizable front-line staff and resources (Frausto-Martínez 
et al. 2020; Walton and van Aalst 2020). These disruptions can place further stress on health systems that are already struggling to cope 
with COVID-19 cases (Salas et al. 2020b). COVID-19 in turn has created challenges for managing and responding to extreme climatic 
events. Stay-at-home orders and concerns over COVID-19 may result in people failing to heed evacuation orders (e.g. in hurricane zones, 
wildfire regions), leading to preventable injuries and deaths (Phillips et al. 2020; Shultz et al. 2020b). Efforts to control wildfires in California, 
for example, were limited both by high heat, low humidity, and high winds along with a lack of prison inmates (an integral part of the 
fire control in the state) to fight fires due to quarantines and early releases related to the pandemic (Kizer 2020). In 2020, the presence 
of COVID-19 challenged emergency responses during major flooding events in Canada, Colombia, Bolivia, Ecuador, Guatemala, Haiti, 
Honduras, Mexico, Panama, Peru, Salvador, Trinidad and Tobago, the United States, and Uruguay (Simonovic et al. 2021).
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who can assess the state of the climate–health evidence 
base and make recommendations based on verifiable 
science and transdisciplinary engagement. This report 
therefore has the following objectives:

1. Use a collaborative and transdisciplinary approach 
to assess and synthesize available peer-reviewed 
evidence on current and projected climate change 
health risks in the Americas.

2. Outline feasible, effective, and timely mitigation 
and adaptation options to protect and promote 
the health of people in the Americas in the short, 
medium, and long term, and to provide clear, 
useable, and relevant policy recommendations that 
support the implementation of those options.

3. Highlight case studies to illustrate climate change 
health risks and the potential benefits of adaptation 
and mitigation strategies.

4. Identify important climate–health research gaps and 
suggest future research that is urgently needed to 
inform decision-making.

5. Provide an evidentiary resource and a public 
health framework for policy-makers, practitioners, 
and researchers that will help to increase public 
engagement in climate change discussions and 
motivate climate change action.

1.4 The role of this IANAS report in responding to 
climate change-related health risks

This report is a response to the need for a focused 
synthesis of climate–health evidence in the Americas. 
It reflects the urgent need for clear, actionable 
recommendations to support responses to and 
preparations for the health impacts of the climate 
crisis. Given the inherent complexity, urgency, and 
magnitude of climate change impacts on the health 
sector, it is critical that robust and timely evidence is 
available to inform effective, feasible, and equitable 
responses and strategies. The challenge, however, is the 
exponentially increasing volume and varying quality of 
research through which decision-makers must sift and 
sort. For example, since 2007, the quantity of research 
publications relating to climate change and health has 
increased eightfold globally (Watts et al. 2021), with 
similar trends in research documented specifically in 
the Americas (Berrang-Ford et al. 2021b; Harper et al. 
2021a, 2021b). However, an international literature 
review found approximately three times as many 
publications from North America as from South America 
(Berrang-Ford et al. 2021b).

The Inter-American Network of Academies of Sciences 
(IANAS) is well positioned to assess the climate–
health evidence base because: (i) it is independent of 
commercial and political vested interests; and (ii) it 
brings together an expansive network of leading experts 

Longer-term climate change has undermined resilience to emerging threats such as COVID-19 for some populations. Indigenous populations 
in South America have been among those most impacted by COVID-19, and this disparity is reflective of multiple interconnecting factors such 
as structural inequalities, marginalization, land dispossession, and government policy (Menton et al. 2021; Polidoro et al. 2020; The Lancet 
2020), as well as climate change, which has exacerbated these other underlying factors. For example, in the Peruvian Amazon, changes in 
precipitation regimes, seasonality, hydrology, and temperatures have undermined Indigenous food systems by disrupting community fisheries, 
reducing access to and availability of highly valued forest animals, and undermining traditional knowledge systems (Zavaleta et al. 2018). This 
has compromised the resilience of remote Indigenous populations to withstand the negative food security implications of COVID-19, since they 
can no longer rely on forest resources when travel restrictions make local food markets inaccessible (Zavaleta-Cortijo et al. 2020). As another 
example, in Kashechewan, Canada, First Nations Indigenous Peoples have faced compounding impacts from COVID-19 and flooding, which 
have exacerbated existing housing shortages and complicated evacuation efforts. 
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2 IANAS’ assessment approach

2.1 Building from and advancing previous climate 
change and health publications from national 
academies

Several national academies or networks have published 
climate change and health synthesis reports (Table 2.1). 
This IANAS report draws on, builds from, and advances 
previous syntheses, providing an in-depth examination 
of climate change and health in the Americas and 
presenting case studies to highlight the climate–health 

nexus (Box 2.1). The sources of evidence assessed in this 
report are outlined in Section 2.2.

2.2 The scope of this report

2.2.1 Evidence assessed in this report

Similar to the EASAC’s (2019) report, we focus on 
synthesizing evidence to inform decision-making, as 
well as identifying research gaps that have important 

Table 2.1 An overview of published and forthcoming climate change and health synthesis reports by international 
academies. Adapted from Table 2.1 in the European Academies’ Science Advisory Council’s report “The imperative of 
climate action to protect human health in Europe” (EASAC 2019).

Academy Report Year of 
publication

European Academies’ Science Advisory 
Council (EASAC)

“Climate change and infectious diseases in Europe” 2010

Interacademy Medical Panel (IAMP) “Statement on the health co-benefits of policies to 
tackle climate change”

2010

German National Academy of Sciences 
Leopoldina

“The co-benefits of actions on climate change and 
public health”

2015

Swiss Academies of Arts and Sciences “Health and global change in an interconnected 
world”

2015

Australian Academy of Science “Climate change challenge to health: risks and 
opportunities”

2016

Inter-American Network of Academies 
of Sciences (IANAS)

“Challenges opportunities for food and nutrition 
security in the Americas: The view of the 
Academies of Sciences”

2017

European Academies’ Science Advisory 
Council

“Opportunities and challenges for research on food 
and nutrition security and agriculture in Europe”

2017

Pontifical Academy of Sciences “Declaration of the health of people, health of 
planet, and our responsibility”

2017

Royal Society of New Zealand “Human health impacts of climate change for New 
Zealand”

2017

US National Academies of Sciences “Protecting the health and well-being of 
communities in a changing climate”

2017

European Academies’ Science Advisory 
Council; Norwegian Meteorological 
Institute

“Extreme weather events in Europe. Preparing for 
climate change adaptation: an update on EASAC’s 
2013 study”

2018

European Academies’ Science Advisory 
Council

“The imperative of climate action to protect human 
health in Europe”

2019

Association of Academies and Societies 
in Asia (AASSA)

“The imperative of climate action to promote and 
protect health in Asia”

2021

Network of African Science Academies 
(NASAC)

Report on climate change and health in Africa. Title 
pending

Forthcoming 
2022

National Academy of Medicine; 
National Academies of Sciences, 
Engineering, and Medicine

Report on climate change and health in the United 
States. Title pending

Forthcoming
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(88.8%) are classified as upper middle income (44.4%) 
or high income (44.4%), with 11.1% considered lower 
middle income (8.9%) or low income (2.2%) (World 
Bank 2020). The Americas covers all climate zone types, 
ranging from Arctic climates to tropical climates, and 
includes a broad diversity of cultures, languages, and 
Indigenous Peoples. Covering such diverse climates, 
ecosystems, cultures, and peoples is a challenge; 
however, it is also a strength and a key contribution 
of this report. As such, an important aim of this report 
is to examine overarching pathways through which 
climate change impacts health across the range of 
different natural and human systems in the Americas, 
while providing depth and nuance through case study 
examples throughout the region.

policy relevance and implications. As such, our intended 
primary audience are the decision-makers in the 
Americas, as well as those whose work depends upon, 
or is influenced by, the Americas. The terminology and 
conceptual understanding of climate change health risks 
described in this report align with those established by 
the Intergovernmental Panel on Climate Change (IPCC 
2019c).

We prioritize citing systematic reviews, which use 
replicable and transparent methods to summarize 
climate change and health literature, as the most 
methodologically rigorous sources of collated 
evidence on climate–health topics. This reflects the 
penultimate step in knowledge production aimed at 
the science-policy interface for climate change, which 
involves assessing research syntheses to produce our 
scientific assessment (Minx et al. 2017) (Figure 2.1). 
However, we also cite other literature to illustrate 
particular topics and case studies, guided by our 
Working Group expert discussions and peer reviewers. 
All articles cited in this report were published before 
September 1, 2021, reflecting the IPCC Working Group 
II publication cut-off date. Our approach does not 
provide an exhaustive bibliographic listing, but rather 
enables an assessment of bigger-picture science-policy 
questions while adding depth and nuance through case 
study examples.

2.2.2 Geographical scope of this report

The Americas represents a region of vast geographical, 
political, and socioeconomic diversity. North, Central, 
and South America encompass 45 countries and/or 
territories with a combined population of approximately 
one billion people (World Bank 2019). Most countries 

Box 2.1 Key questions addressed in this report, building on questions addressed in EASAC’s (2019) report about 
climate change and health

Climate change and health risks in the Americas
1. What are the major climate change health risks in the Americas?

2. Who are those at greatest risk? Where do they live?

3. How do the social determinants of health mediate, modify, amplify, or reduce climate change risks and responses?

Climate change and health responses in the Americas
1. Which policies, plans, and development pathways increase resilience to the impacts of climate change?

2. Which are the best (combinations of) adaptation strategies in different contexts? What are the limits of adaptation?

3. What are the benefits of climate change mitigation for health?

4. What are the trade-offs and synergies associated with different adaptation and mitigation strategies? Are there unintended adverse 
consequences linked to certain strategies?

5. What are the enablers and barriers to the implementation of responses?

How can the consideration of health in climate policy, programming, and actions be improved?

SCIENTIFIC
ASSESSMENTS

RESEARCH SYNTHESIS:
REVIEWS & META-STUDIES

INDIVIDUAL RESEARCH:
PEER-REVIEWED PAPERS & GREY LITERATURE

Expanding 
knowledge

Aggregating 
knowledge

Integrating 
knowledgeSu�icient for

science-policy
exchange

IANAS CLIMATE-HEALTH
ASSESSMENT REPORT

Figure 2.1 Knowledge production for science-policy 
interactions related to climate change (adapted from Minx 
et al. 2017).
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and programs such as the SDGs (Smith et al. 2014). 
Generally, it is expected that climate-related health 
risks will be lower at 1.5°C of warming than 2°C (IPCC 
2018); therefore, in this report we describe the direct 
and indirect health impacts of climate change under 
multiple climate scenarios—including the potential 
impacts of non-climatic drivers of risk and the potential 
impacts of mitigation and adaptation strategies. 
Climate change “impacts”, as defined by the IPCC, 
“generally refer to effects on lives; livelihoods; health 
and well-being; ecosystems and species; economic, 
social and cultural assets; services (including ecosystem 
services); and infrastructure. Impacts may be referred to 
as consequences or outcomes, and can be adverse or 
beneficial” (IPCC 2019c). Some consequences of climate 
change might provide apparently beneficial outcomes 
in specific circumstances, such as increased rainfall in 
previously arid regions, out-migration of specific vectors 
of infection, or in-migration of edible marine species; 
these changes, however, are likely to be transient, may 
only affect certain population sectors, and are unlikely, 
on balance, to outweigh the negative aspects of climate 
change.

The magnitude, distribution, and frequency of health 
outcomes regularly change because of multiple 
intersecting social and environmental factors, so 
quantifying the actual impacts attributed specifically 
to climate change can be challenging. The extent to 
which changes in health outcomes have occurred due 
to climate change is often grounded in the science of 
“detection and attribution”, defined by the IPCC as 
“demonstrating that climate or a system affected by 
climate has changed in some defined statistical sense 
… Attribution is defined as the process of evaluating 
the relative contributions of multiple causal factors 
to a change or event with a formal assessment of 
confidence” (emphasis added) (IPCC 2018). In other 
words, detection tells us whether health has changed 
since a baseline reference period, and attribution tells us 
to what extent this is due to climate change. Detection 
and attribution science has become increasingly 
important because international negotiations on 
climate change under the UNFCCC focus on preventing 
“dangerous” anthropogenic climate change. Therefore, 
to align with these international discussions, decisions, 
and negotiations, this report uses a detection and 
attribution framework to understand climate change 
impacts on health outcomes in the Americas. For each 
health outcome, we considered whether, how, and 
to what extent climate change affected health in the 
Americas.

In the past decades, climate change science has 
advanced significantly due to a much clearer 
understanding of the character, timing, and spatial 
distribution of climate change (IPCC 2021). At the same 
time, advances in health sciences have improved our 
understanding of how the magnitude, distribution, 

2.3 Framework for IANAS’ inquiry

2.3.1 Defining risk related to climate change 
impacts on health

This report makes use of a risk framework that considers 
climate–health impacts as a function of: (i) climate 
change-induced hazards; (ii) exposure to these hazards; 
and (iii) vulnerability of humans and systems (Abram 
et al. 2019; Ebi et al. 2006). Hazards include the direct 
and indirect weather or environmental events resulting 
from climate change (e.g. extreme heat, wildfires, etc.), 
whereas exposure refers to the proximity, type, and 
scale of climate hazards (e.g. duration of heatwaves, 
area burned in wildfires, etc.), which may range from 
long-term climate variability to extreme weather events 
and climate disasters. Vulnerability refers to the extent 
to which humans and human systems are susceptible 
to the impacts of climate hazards (Ebi et al. 2006), and 
is affected by numerous biological (e.g. sex, age) and 
societal (e.g. geopolitics, socioeconomic status, gender 
roles) conditions.

Adaptation to reduce exposure and vulnerability, and 
thus overall risk, is critical given that climate change 
impacts will continue into the future even with the 
implementation of mitigation strategies. Resilience is a 
property of interconnected natural and human systems 
that enables those systems to return to a state that is 
equal to or better than the previous state in response 
to a climate hazard, event, trend, or disturbance (IPCC 
2019c). In this report, coping capacity refers to the 
availability of currently feasible adaptation options, 
whereas adaptive capacity refers to the ability of 
systems to increase coping capacity in the future (Ebi 
et al. 2006). Adaptations to reduce the risk of negative 
health burdens may be implemented through individual- 
and/or population-level interventions, such as policies, 
programming, and the development of climate-resilient 
infrastructure (Ebi et al. 2006).

Past, current, and future climate–health projections 
must take into account the drivers of risk, including 
the ways in which hazards, exposure, and vulnerability 
may change over time. Hazards will increase as climate 
change contributes to changing seasonal patterns, 
as well as changes in the frequency and intensity of 
extreme weather globally. In particular, climate change 
is expected to exacerbate climate-sensitive health 
impacts in populations that are already experiencing 
these health outcomes as a result of increased exposure 
to hazards. For example, those living in regions 
where maximum daytime temperatures already pose 
substantial health risks are projected to experience 
additional heat-related morbidity and mortality as 
climate change progresses (Vicedo-Cabrera et al. 2018). 
Vulnerability may also increase in some contexts, for 
example because of aging populations, and decrease 
in other contexts due to improvements in the social 
determinants of health achieved through policies 



IANAS  Climate change and health in the Americas | March 2022 |  15

relationship, this report aims to highlight several key 
cross-cutting themes that are crucial to understanding 
and responding to climate change impacts on health 
in various geographical and social contexts. Thus, 
throughout this report we focus on the following 
themes:

• Urgency of action to limit climate–health impacts.

• Equity in climate–health evidence synthesis and 
responses.

• The intersection of various social conditions, factors, 
and characteristics.

• Sustainability, transdisciplinarity, and systems 
thinking.

• Indigenous knowledge.

• Coupled socio-ecological systems.

• Knowledge communication, including knowledge 
gaps and uncertainty.

• Cascading and cumulative climate–health risks.

• Issues of scale (geopolitical, temporal, and spatial).

and frequency of health outcomes have changed over 
time. At the climate–health interface, it has become 
increasingly possible to attribute a portion of the 
changes in health to climate change (Ebi et al. 2020, 
2017). However, this is not always the case, particularly 
in research examining the societal impacts of climate 
change (Ebi et al. 2020). For the health sciences, 
conducting formal detection and attribution research 
requires long-term datasets, a detailed understanding 
of the causal pathway between climate change and 
a health outcome, and data on other determinants 
of health. The challenges of conducting this type 
of research are similar to health research examining 
the causes of cancer: these include identifying 
counterfactual conditions, availability of observational 
data, and difficulties in accounting for other factors 
that can change risk (Ebi et al. 2020). Generally, climate 
change attribution and detection research is often used 
to investigate the likelihood that an event would occur 
or the intensity of the event with and without climate 
change. Often, understanding the intensity of the event 
is more useful for decision-makers (Ebi et al. 2020, 
2017; IPCC 2018); therefore, this is often prioritized in 
health impact assessments (Ebi et al. 2020, 2017). In 
this report, we assessed, when possible, detection and 
attribution of health impacts of climate change, noting 
that detection evidence is often more available, and 
attribution evidence is not always possible.

2.3.2 Cross-cutting themes for this report

Given the complex pathways through which climate 
affects health and the many factors that modify this 
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3 How does climate change impact health?

3.1 The scope and scale of climate change health 
risks

The pathways through which climate change affects 
health are complex, interconnected, and modified by 
many environmental, biological, and social factors. 
Despite these complexities, climate–health risks are 
generally categorized as direct or indirect impacts. Direct 
effects include risks such as heat-related morbidity and 
mortality, as well as injury and death during extreme 
weather events. Indirect impacts are typically mediated 
through climate change effects on ecosystems or 
social systems. These include declining air quality or 
increasing risks of food- and waterborne diseases as 
a result of environmental changes, as well as mental 
health impacts linked to environmental change and 
social disruptions. It is important to note that these 
categorizations are broad, and health impacts may 
be cumulative, cascading, or compounding. For 
example, heat-related morbidity may include direct 
impacts on health as well as indirect impacts on mental 
health, maternal/fetal health, and other outcomes. A 
conceptual diagram outlining the various pathways 
and modifiers of climate–health impacts is presented 
in Figure 3.1. The importance of transdisciplinary and 
systems thinking approaches is increasingly being 
recognized as necessary for understanding these 
complex issues, especially in the context of multiple 
converging challenges in the 21st century (Bowen and 
Ebi 2015; Zinsstag et al. 2018). Transdisciplinarity and 
systems thinking represent an important cross-cutting 
theme of this report.

In this chapter, we present climate–health pathways 
organized into major health impact categories (Figure 
3.2). For each health outcome category there is: (i) a 
summary of current risks; (ii) a description of future 
projections; (iii) an outline of possible mitigation 
and adaptation options; and (iv) an identification of 
policy-relevant research gaps and recommendations. 
A synthesis of overarching mitigation and adaptation 
options and research gaps is presented in Chapters 4 
and 5. Case studies are incorporated throughout the 
report to provide local and regional context and to 
highlight in-depth examples of climate–health impacts 
and response strategies across the Americas.

3.2 Heat-related morbidity and mortality 

3.2.1 How does climate change increase the risk of 
heat-related morbidity and mortality?

Even under low emissions scenarios, the Americas 
are projected to experience increases in heat-related 
mortality and morbidities such as heat exhaustion 
and heatstroke, as well as cardiovascular, renal, and 
respiratory illnesses linked to heat exposure (Anderson 
et al. 2018b; Ebi et al. 2018b; Green et al. 2019; 
Limaye et al. 2018; Marsha et al. 2018; Morefield et al. 
2018). Even with strong adaptation efforts, excess 
mortality due to increased heatwaves is projected 
across all climate change scenarios in many countries 
throughout the century, including in Canada, the United 
States, Chile, Brazil, and Colombia (Guo et al. 2018). 
In the case of the United States, annual heat-related 
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Heat morbidity & mortality Non-communicable & chronic diseases
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Figure 3.1 An illustration of the conceptual framework that guides this IANAS assessment report.
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The impacts of extreme heat exposure are not equitably 
distributed within and between countries in the 
Americas, varying greatly on the basis of geography, 
political landscape, economics, and several biological 
and social factors (Anderson et al. 2018b; Feron et al. 
2019; Limaye et al. 2018; Marsha et al. 2018; Morefield 
et al. 2018). The impacts of some social and biological 
factors on extreme heat-related health outcomes have 
been well-researched, establishing clear evidence 
that age, sex, and socioeconomic conditions affect 
heat-related mortality and morbidity (Green et al. 2019; 
Son et al. 2019). For example, in British Columbia, 
Canada, a heatwave from June 25 through July 1, 
2021 resulted in over 500 deaths, which represented 
a 300% increase in heat-related mortality compared 
with previous years; of these heat-related deaths, 79% 
were aged 65 years or older. In Mexico City, projections 
indicate that the urban heat island effect, together 
with climate change effects, can increase extreme heat 
exposure in more urbanized and populated locations 
within a city (Martilli et al. 2020), with the most severe 
impacts in neighborhoods with lower socioeconomic 
conditions (Case Study 2). In this context, green spaces 
can play an important role; for example, the amount 
of green space in cities has been linked to decreased 
heat-related health effects (Sera et al. 2019). There 
is less available evidence related to the role of other 
factors that may affect the relationship between heat 
exposure and health outcomes, including access to 
healthcare, housing, education, racism, occupation, 
and indicators of environmental quality (Green et al. 
2019; Son et al. 2019). These social factors, in addition 
to human physiological factors (Vanos et al. 2020), 
need to be better integrated into heat–health climate 
projections to provide more accurate, nuanced, and 
useful information to policy-makers.

It is clear that climate change will increase heat-related 
mortality and morbidity, but considerably more research 
is needed in Central and South America (Berrang-Ford 
et al. 2021b; Harper et al. 2021a), which is vital to 
ensure that past, present, and projected heat–health 
information within different countries/cities can 
adequately support country/city-level decision-making 
to prevent heat-related deaths (Vanos et al. 2020). In 
particular, an ensemble approach has been called for, 
which not only considers future climate conditions but 
also future population demographics, human physiology 
and acclimatization, underlying health conditions, 
changing socio-cultural norms and behaviors, and 
adaptation efforts to improve the robustness and utility 
of future projections (Vanos et al. 2020).

3.2.2 What adaptation and mitigation options are 
available to reduce heat-related morbidity 
and mortality?

Most of the health impacts of extreme heat exposure 
are preventable (but see section 4.1.4, outlining the 

deaths could exceed 36,000 under the moderate 
Representative Concentration Pathway (RCP)4.5 
emission pathway, but would increase to approximately 
97,000 annually under the high GHG emission 
RCP8.5 pathway. These values far exceed the 12,000 
heat-related deaths that are estimated to have occurred 
annually in the United States during the current decade 
(Shindell et al. 2020).

In Nicaragua, approximately 66% of workplaces 
have no cooling systems. Indoor air temperatures 
often exceed the local standards for safe work with 
moderate exertion, a trend that is expected to increase 
considerably by mid-century (Sheffield et al. 2013). 
In Central America, kidney disease is becoming more 
prevalent, which may be linked to high temperatures 
and dehydration, although the specific causes are still 
under investigation (Glaser et al. 2016; González-Quiroz 
et al. 2018). As the risks of heat stress and dehydration 
increase under climate change, high-risk areas for kidney 
stone development are projected to expand northward 
through the United States (Brikowski et al. 2008).

Other consequences of increased heat exposure are 
also gaining increasing attention, including maternal 
and fetal health impacts (Chersich et al. 2020; Zhang 
et al. 2017). For example, in California, increased risk 
of preterm delivery was associated with higher ambient 
temperatures (Basu et al. 2010), and research conducted 
in Colombia, Bolivia, and Peru found that exposure to 
increased temperatures decreased birth weight and 
increased the probability of low birth weight (Molina 
and Saldarriaga 2017).

An increasing volume of evidence also supports a link 
between heat exposure and negative mental health 
outcomes (Burke et al. 2018; Kim et al. 2019). Studies 
have documented an association between extreme 
heat exposure and suicide in Canada, the United 
States, Mexico, and Brazil (Burke et al. 2018; Kim et al. 
2019). By 2050, the projected increase in heat-related 
suicide in the United States and Mexico is estimated 
to be comparable to other known suicide risk factors, 
such as economic recessions (Burke et al. 2018). This 
association may be explained by the impact of heat on 
serotonin function and resultant changes in behavior 
(Kim et al. 2019), although the mechanisms behind this 
relationship remain unclear.

Figure 3.2 Summary of the climate-sensitive health outcome 
categories in the Americas that are assessed in this report.
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however, most of this evidence in the Americas comes 
from Canada and the United States (Hondula et al. 
2015) and this adaptation is far more challenging in 
countries, communities, and households facing higher 
mean and extreme temperatures, lower adaptive 
capacity, changing demographics, and reduced access 
to resources, highlighting the importance of equity 
considerations in response options. For example, 
future programming and infrastructure planning must 
consider the specific needs of older populations in 
many urban centers, as the age distribution continues 
to shift in many cities globally (Case Studies 2 and 4). 
Furthermore, the role that air conditioning has played 
in adaptation strategies (Sera et al. 2020; Vanos et al. 
2020) demonstrates the need to combine adaptation 
and mitigation strategies to reduce health risks. For 
instance, the use of air conditioners to reduce heat 
exposure is projected to increase mortality from air 
pollution in the United States, if electricity generation 
does not transition to renewable sources (Abel et al. 
2018). Under a high emissions climate change scenario, 
adaptation efforts are projected to substantially reduce 
the mean percentage change in heatwave-related 
excess deaths in Brazil, Canada, Chile, Colombia, and 
the United States; nonetheless, even with substantial 
adaptation efforts, the mean percentage increase in 
heatwave-related excess deaths will still be substantially 
greater under a high emissions scenario compared with 
a lower emissions scenario that might be achieved with 
sustained mitigation efforts (Figure 3.3) (Guo et al. 
2018).

limits of adaptations for heat exposure) through 
interventions at the individual and population level, 
emphasizing the importance of adaptation efforts 
(Vanos et al. 2020). Possible interventions, which 
are not mutually exclusive, may be infrastructural, 
technological, behavioral, and physiological (Ebi et al. 
2021b; Jay et al. 2021), and include options such as 
insulation, green infrastructure, external shutters, cool 
roofs, urban greening, acclimatization, public health 
programming, subsidies for green initiatives, seeking 
cooler environments, and changes in clothing. For 
example, heat warning systems can trigger responses 
across sectors to protect public health, including 
providing equitable access to cooling stations, 
protecting occupational health through regulations, 
and encouraging behavioral changes (e.g. hydration, 
checking on neighbors) (Case Study 3). Implementing 
integrated and intersectoral interventions will require 
decision-makers to consider different time horizons, 
as successful adaptation will require both shorter-term 
(e.g. education and awareness) and longer-term (e.g. 
long-term city planning for improved green spaces, 
green infrastructure) interventions. Systematic reviews 
have indicated that these intersectoral considerations 
are often overlooked, resulting in insufficient 
preparedness and/or policies to protect health from 
extreme heat exposure (Brimicombe et al. 2021).

There is evidence that some regions are adapting to 
increased heat exposure (Arbuthnott et al. 2016; Ebi 
et al. 2018a; Sheridan and Dixon 2017) (Case Study 3); 

Case Study 2 Climate change and urban heat island effects in Mexico City

Heat island effects can increase the annual average temperature by 2–6°C in some cities, severely amplifying climate change risks (Estrada et al. 
2017). This was observed in 2017, when the urban heat island effect in Mexico City resulted in the mean annual temperature being 3.5°C 
higher than in the surrounding non-urban areas. Projections suggest that the average annual temperature in Mexico City may increase by over 
4°C by 2100; however, due to the heat island effect, the more urbanized and populated areas of the city are projected to experience increases 
of up to 8°C. By 2100, there is a nearly 100% probability that all of Mexico City will experience 5°C of warming. This situation is common 
to many cities globally; indeed, under a high emissions scenario (i.e. RCP8.5) and with no local urban heat island reduction policies, there is a 
60% probability that the mean annual temperatures of all cities will increase by more than 3°C by 2050, and that probability increases to nearly 
100% for the most populated areas within cities. 

These warming climate conditions present important economic and social risks for Mexicans (Estrada et al. 2020; Estrada Porrúa and Martinez 
López 2011; Sánchez Vargas et al. 2011), as heat island effects will amplify health risks disproportionately across different areas and populations 
within the city (Dell et al. 2014; Kjellstrom et al. 2018; Sanz-Barbero et al. 2018; Watts et al. 2019b; Weber et al. 2015; WHO 2014b). High-
density, low-income populations living in areas with higher concentrations of concrete and less access to green space, who may also have 
limited access to health services, a high prevalence of pre-existing health conditions, high levels of social isolation, and reduced access to air 
conditioning, are at increased risk of heat-related morbidity and mortality (Johnson et al. 2009; Wilhelmi et al. 2013). These considerations 
have become increasingly important as the COVID-19 pandemic has negatively impacted the economy and air quality in Mexico City, further 
exacerbating socioeconomic challenges and inequities (Peralta et al. 2020). The elderly are also at higher risk of heat-related morbidity and 
mortality due to physiology and other socioeconomic factors. Therefore, it is important to consider population changes when projecting climate 
change risks. The population of Mexico City is projected to substantially change by 2050, with critical shifts in age demographics, including a 
substantially smaller youth population and a substantially larger elderly population (Angel et al. 2017). 

Proposed modifications to the built environment of Mexico City to reduce heat island effects include expanding areas covered by trees and 
plants, creating green- and white-colored roofs, and creating pavements with materials that reflect solar energy and release heat quickly. These 
types of action have clear short- and long-term advantages and relatively low implementation costs, as well as substantial potential health 
benefits, particularly for the most vulnerable populations. Important additional benefits of these changes to the built environment include 
reduced energy consumption, increased aesthetic value, and reduced risk of flooding. However, the most effective solutions to reducing heat-
related risks are underpinned by equity considerations; for example, initiatives to reduce poverty play a critical role in climate change adaptation 
for Mexico City and other cities globally. 
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Case Study 3 Impacts of and solutions to heatwave mortality in Argentina

Research indicates that the frequency and intensity of extreme heat is increasing in Argentina. Rusticucci et al. (2016) found that the number 
of extreme heat days (i.e. those days above the 90th percentile for maximum temperature, using 1960 as the reference year) increased fourfold 
between 1960 and 2000 in the northwestern region of the country. The frequency of heatwaves has also increased as a result of climate 
change, with multiple extended heatwaves that were previously classified as one-in-100-year events occurring between 2013 and 2018. Barros 
et al. (2015) reported that the summers of 2013–2014 represented the longest extended heatwaves ever recorded in Argentina, which had 
substantial impacts on the energy supply in the Buenos Aires region. 

In Argentina, the association between high temperatures and mortality was first studied in the cities of Buenos Aires and Rosario (Almeira 
et al. 2016). Although heat-related deaths did not differ substantially by sex, age was identified as a key risk factor, with individuals older than 
65 years representing 70–80% of heat-related deaths. On the basis of these data, the Argentina National Weather Service implemented an 
alert system in both cities with the aim of anticipating extreme meteorological situations to protect public health. The warning system has 
been expanded to cover the entire country from October to March, which are the hottest months of the year, and could serve as an excellent 
adaptation tool to improve the resiliency of health systems. An investigation into the impacts of the expanded warning system could provide 
an opportunity to evaluate the efficacy of these types of warning system for protecting health (Toloo et al. 2013; Weinberger et al. 2021). The 
National Weather Service of Argentina is attempting such an evaluation using 3-month probabilistic forecast data for extreme minimum and 
maximum temperatures, in an effort to better prepare for extreme temperature events and the resultant impacts on health (Collazo et al. 2019). 

Other solutions to reduce heat-related deaths include those aimed at understanding climate–health impacts through an interdisciplinary 
lens. These include the research and program development efforts of the Latin American Climate-Health Observatory, sponsored by the Latin 
American Center for Interdisciplinary Training (CELFI-Datos); the Government Secretariat for Science, Technology and Productive Innovation; and 
the Ministry of Education, Culture, Science and Technology of Argentina. For example, the Observatory was developed through consultation 
with a team of students and experts in Buenos Aires in September 2019 to examine several interdisciplinary solutions to local environment–
health issues. The proposals being developed represent promising approaches to addressing the complex and multifaceted challenges posed by 
climate change in Latin America, including reducing heat-related mortality.

2018; Lelieveld et al. 2019b; Vohra et al. 2021) (Case 
Study 5).

Ambient air pollution is worsening as climate change 
progresses. The number of annual global deaths 
attributable to ambient air pollution has increased by 
51% since 1990, and the number continues to rise 
(Landrigan et al. 2018). In the absence of aggressive 
interventions, the number of global deaths attributable 
to ambient air pollution is projected to double by 2050 
(Lelieveld et al. 2015).

Climate change and air pollution are intimately linked 
(Academy of South Africa et al. 2019). Fuel combustion 
– fossil fuel combustion in high and middle income 
countries and biomass burning in low income countries 
– is responsible for 80% of the GHGs and short-lived 
climate pollutants that drive climate change (Scovronick 

3.3 Air pollution-related illnesses

3.3.1 How does climate change increase the risk of 
air pollution-related illnesses?

Ambient air pollution is the world’s largest 
environmental cause of disease and premature death 
(Academy of South Africa et al. 2019; Landrigan 
et al. 2018). The Global Burden of Disease (GBD) 
study estimated that, in 2019, ambient air pollution 
was responsible for approximately 6.67 million (95% 
confidence interval 5.9–7.5 million) premature deaths 
worldwide and for approximately 206,000 deaths in 
the Americas (GBD 2019 Risk Factors Collaborators 
2020) (Figure 3.4 and Table 3.1). Other estimates 
based on alternative exposure scenarios and newer 
exposure–response functions suggest that the annual 
global numbers of premature deaths attributable to air 
pollution may be as high as 9–12 million (Burnett et al. 

Case Study 4 Heatwaves in Brazil

In Brazil, a series of nationwide epidemiologic studies investigated the role of temperature and temperature variability on morbidity using 
hospital admissions data from the public health system (Wu et al. 2021; Xu et al. 2019a, 2019b, 2020b, 2020c; Zhao et al. 2018, 2019a, 
2019b, 2019c, 2019d). The data in these studies covered 15 years (2000–2015) of daily admissions obtained from 1,869 hospitals with a 
coverage area representing approximately 70% of the Brazilian population. Generally, temperature deviations from the thermal comfort zone 
were significantly associated with increased hospital admissions for different diseases, such as cardiovascular conditions, respiratory illnesses, 
and diabetes (Wu et al. 2021; Xu et al. 2019a, 2019b, 2020b, 2020c; Zhao et al. 2018, 2019a, 2019b, 2019c, 2019d). Children, the elderly, 
undernourished individuals, and economically deprived people were the most affected by extreme temperatures (Xu et al. 2020b; Zhao et al. 
2018). These results reinforce the concept that climate changes can lead to sustainability and health consequences, but these changes also 
affect human rights and dignity.
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et al. 2015). Additionally, fuel combustion creates 85% 
of airborne particulate pollution and almost all air 
pollution associated with sulfur and nitrogen oxides (SOx 
and NOx) (IEA 2016). Importantly, “changes in air quality 
(near-surface ozone and particulate matter, or PM) at 
global and local scales are predominantly driven by 
changes in ozone and aerosol precursor emissions rather 
than climate” (IPCC 2021).

Coal is the world’s most polluting fossil fuel, and coal 
combustion is a key driver of climate change. Natural 
gas, which has become increasingly abundant due to 
wide-scale hydraulic fracturing (i.e. “fracking”), has 
been portrayed as a cleaner alternative with less climate 
impact than coal or oil (Landrigan et al. 2020). This 
claim is partly true because gas combustion generates 
less CO2 per unit of energy production than combustion 
of coal or oil, and it produces only negligible quantities 
of sulfur dioxide and airborne particulate pollution. 
However, natural gas extraction and use make much 
larger contributions to climate change than are 
generally recognized. For example, as much as 4% 
of all gas produced by fracking is lost to leakage, 
and massive amounts of gas leakage from fracking 
seem to have contributed to recent sharp increases in 
atmospheric methane concentrations (Howarth 2019). 
Methane is a potent driver of global warming, with a 
heat-trapping potential 30 times greater than that of 
CO2 over a 100-year span and 85 times greater over 
a 20-year span. In addition, natural gas combustion 
generates CO2 and contributes to air pollution through 
the production of nitrogen oxides, which are potent 
respiratory irritants.

More than 70% of the deaths caused by air pollution 
are due to non-communicable diseases: heart disease, 
stroke, chronic obstructive pulmonary disease, lung 
cancer, diabetes, and pneumonia in adults; and 
premature birth and low birth weight in infants 
(Landrigan et al. 2018). Evidence is mounting that air 
pollution may increase the risk of disease and death from 
additional causes beyond those currently considered 
in the Global Burden of Disease study, suggesting that 
current estimates may be conservative undercounts 
of the full toll of air pollution on human health. 
Most worrisome are reports that airborne particulate 
pollution may increase the risk of neurocognitive and 
neurobehavioral diseases, such as reduced IQs and 
increased risk for attention deficit/hyperactivity disorder 
and autism spectrum disorder in children (Perera et al. 
2019; Volk et al. 2021); and increased risk of dementia 
in adults (Heusinkveld et al. 2016).

Climate change will worsen ambient air pollution and 
increase the burden of air pollution-related disease 
and death through multiple mechanisms. For example, 
higher mean temperatures and an increased frequency 
of heatwaves will increase the need to produce 
electricity to power air-cooling systems, which in turn 

Figure 3.3 Mean percentage change of heatwave-related 
excess deaths between period 2031–2080 and period 1971–
2020 with and without adaptation measures in Brazil, Canada, 
Chile, Colombia, and the United States (data to create figure 
from Guo et al. 2018).
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Figure 3.4 Deaths per 100,000 people attributable to ambient air pollution by country, Western Hemisphere, Central America, 
and the Caribbean, 2019, as well as by state for the United States, Mexico, and Brazil (data to create figure from GBD 2019 Risk 
Factors Collaborators 2020).
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Table 3.1 Mortality attributable to ambient air pollution by country in the Americas, 2019 (data from GBD 2019 Risk 
Factors Collaborators 2020)

Country Number of deaths  
(95% confidence interval)

Deaths per 100,000 people 
(95% confidence interval)

Antigua and Barbuda 30 (12–50) 34 (14–57)

Argentina 12,590 (7,871–17,879) 28 (17–40)

Bahamas 99 (29–183) 26 (8–49)

Barbados 175 (83–276) 59 (28–93)

Belize 93 (35–159) 23 (9–39)

Bermuda 8 (1–16) 12 (2–24)

Bolivia 3,885 (2,406–5,610) 32 (20–47)

Brazil 43,575 (31,146–57,276) 20 (14–26)

Canada 3,765 (1,767–6,033) 10 (5–17)

Chile 5,808 (4,598–6,939) 32 (25–38)

Colombia 13,033 (8,864–18,222) 27 (19–38)

Costa Rica 938 (643–1,271) 20 (14–27)

Cuba 5,845 (2,901–9,669) 51 (26–85)

Dominica 33 (14–55) 48 (21–80)

Dominican Republic 3,798 (1,791–6,777) 35 (16–62)

Ecuador 4,236 (2,782–5,921) 24 (16–34)

El Salvador 1,901 (1,176–2,913) 30 (19–47)

Greenland 6 (1–17) 11 (1–30)

Grenada 51 (21–85) 50 (20–82)

Guatemala 3,734 (2,228–5,564) 21 (13–31)

Guyana 411 (180–731) 53 (23–95)

Haiti 1,822 (709–3,681) 15 (6–30)

Honduras 1,783 (1,052–2,686) 18 (11–27)

Jamaica 938 (586–1,336) 33 (21–48)

Mexico 36,582 (27,288–46,596) 29 (22–37)

Nicaragua 1,002 (575–1,581) 15 (9–24)

Panama 650 (383–963) 16 (9–23)

Paraguay 1,045 (636–1,604) 15 (9–23)

Peru 8,905 (5,923–12,790) 26 (17–38)

Puerto Rico 427 (93–800) 12 (3–23)

Saint Kitts and Nevis 11 (5–18) 18 (8–30)

Saint Lucia 80 (36–131) 46 (21–75)

Saint Vincent and the 
Grenadines

62 (26–104) 55 (23–91)

Suriname 261 (127–426) 45 (22–74)

Trinidad and Tobago 890 (326–1,535) 64 (23–111)

United States of America 47,787 (26,056–71,528) 15 (8–22)

United States Virgin Islands 31 (15–48) 30 (15–46)

Uruguay 733 (367–1,164) 21 (11–34)

Venezuela 12,384 (8,086–17,903) 44 (29–64)

Total 219,407
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that focus on the protection of public health. Targets 
and timetables are essential, as are both enforcement 
and incentives. In the United States, concentrations 
of six common air pollutants have been driven down 
by about 70% since the passage of the Clean Air 
Act in 1970. Similar declines have been documented 
throughout the Americas as gasoline use transitions 
from leaded to unleaded gasoline (Thomas et al. 1999).

Prevention of air pollution has proved highly 
cost-effective. In the United States, gross domestic 
product increased by nearly 250% in the same 45-year 
span over which air pollution fell by 70% (Samet et al. 
2017). During this time, every dollar invested in the 
control of ambient air pollution yielded an estimated 
US$30 (95% confidence interval $4–88) in benefits, 
due to the increased economic productivity of healthier, 
longer-lived populations and to averted healthcare  
costs (EPA 2011). These findings rebut the common  
but fallacious claim that pollution control stifles 
economic growth. The authors of the 2018 Lancet 
Commission on Pollution and Health argued that these 
highly successful, cost-effective air pollution control 
strategies are ready to be used on a global scale. They 
provided a blueprint for the development of climate 
mitigation strategies related to air pollution reduction 
(Landrigan et al. 2018).

Enduring reductions in air pollution will require 
both regulations that focus on controlling airborne 
concentrations of pollutants and those that focus 
on the control of pollution at its sources. The most 
effective strategy for achieving this goal is a rapid, 
government-incentivized transition away from all fossil 
fuels (coal, gas, and oil) to clean, renewable energy 
sources (Lelieveld et al. 2019a). Governments have 
access to multiple tools to accelerate such a transition, 
including the creation of incentives and tax structures 
that favor renewable energy sources, ending current 
taxpayer-supported subsidies and tax breaks for the 
fossil fuel industry (estimated at US$35 billion annually 
in the United States), and taxing pollutant emissions 
through the application of the ”polluter-pays” principle.

will increase fossil fuel combustion and generate more 
GHGs. Climate change may also increase sensitivity 
to airborne pollutants. For example, high summer 
temperatures will likely increase cardiovascular sensitivity 
to airborne particulate pollution and increase mortality 
from cardiovascular diseases and stroke (Balbus et al. 
2013).

Ambient air pollution and its health effects are 
distributed very inequitably and are closely correlated 
with poverty (Landrigan et al. 2018). Ninety-two percent 
of all pollution-related mortality occurs in low and 
middle income countries, with the greatest numbers 
of deaths from pollution-related disease occurring in 
rapidly developing and industrializing lower middle 
income countries—reflecting environmental injustice 
on a global scale. In all countries, irrespective of level 
of income, the health effects of air pollution are 
most frequent and severe among the poor and the 
marginalized. In North America, minority communities, 
Indigenous Peoples, and communities of color 
experience disproportionately high levels of exposure to 
air pollution and suffer disproportionately high rates of 
pollution-related disease (Academy of South Africa et al. 
2019; Finkelstein et al. 2003; Hajat et al. 2015).

3.3.2 What adaptation and mitigation options 
are available to reduce the risk of air 
pollution-related illnesses?

Because climate change and air pollution are so closely 
related, action taken against either of these threats 
has high potential to be synergistic and to produce 
multiple benefits. Experience gained over the past half 
century in high income countries and some middle 
income countries shows that air pollution can be 
controlled and air pollution-related disease and death 
prevented (Landrigan et al. 2018). This is proof positive 
that pollution is not the inevitable price of economic 
progress. The key to controlling air pollution has 
been cities, states/provinces, and countries adopting 
pollution control strategies that are based in law, policy, 
regulation, and technology, that are science-driven, and 

Case Study 5 COVID-19 and air pollution-related mortality

Marked reductions in ambient air pollution were observed in 2020 during the early stages of the COVID-19 pandemic, as economic activity and 
fossil fuel combustion fell precipitously around the world. In northern India, concentrations of fine airborne particulate matter (PM2.5) declined 
by more than 50% (Gautam 2020). In Europe, nitrogen dioxide concentrations fell by 40% and PM2.5 concentrations fell by 10% (Myllyvirta 
and Thieriot 2020). In New York City and Los Angeles, PM2.5 concentrations fell by 25–30%. 

These COVID-19-related improvements in air quality translated into fewer deaths from pollution-related disease. An estimated 77,000 lives 
in China were saved in January and February 2020, and 11,000 lives (95% confidence interval 7,000–21,000) were saved in Europe in April 
2020 (Auffhammer et al. 2020). In subsequent months, as economic activity and energy use resumed, air pollution levels rebounded, so these 
reductions in rates of air pollution-related mortality are likely to be temporary.

Although these COVID-related improvements in air quality were short-lived, they have enabled us to imagine a world in which improvements in 
air quality are permanent, skies are blue, and the numbers of premature deaths caused by air pollution are greatly diminished.
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et al. 2016; Young et al. 2015b). There are many 
different pathways through which rainfall alters the 
risk of waterborne illness: for example, rainfall can 
transport pathogens from livestock, from manure 
applied to crops, from human wastewater, and from 
industrial wastewater into drinking water sources. 
Heavy rainfall events can also challenge and exceed 
sewage treatment capacity, resulting in untreated and 
potentially contaminated wastewater being discharged 
into drinking water sources, which has been associated 
with increased rates of diarrhea (Guzman Herrador 
et al. 2015; Levy et al. 2016). In addition, heavy 
rainfall can also contaminate drinking water through 
pathogens infiltrating aging, poorly maintained, and/
or inadequately constructed drinking water distribution 
systems, as well as systems that are placed in high-risk 
locations that do not provide the level of treatment 
needed to cope with heavy rainfall events (Exum et al. 
2018; Jagai et al. 2015; Uejio et al. 2017). Heavy 
rainfall leading to flooding can also damage treatment 
infrastructure or interrupt electricity (Cashman 2014; 
Kohlitz et al. 2017). Conversely, a lack of rainfall 
and drought can lead to pathogens accumulating 
or concentrating in the environment, which has also 
been associated with increased diarrhea cases (Kraay 
et al. 2020). For example, low rainfall can decrease 
river water levels and flow rates, resulting in higher 
concentrations of wastewater effluent and increasing 
the risk of exposure to pathogens for downstream 
users (Guzman Herrador et al. 2015; Levy et al. 2016). 
Additionally, drought conditions can also decrease the 
efficacy of water and wastewater treatment system 
processes (White et al. 2017). Concurrent, cumulative, 
and cascading environmental conditions are complex 
but important in the context of waterborne illness 
(Levy et al. 2016, 2018). For instance, since dry 
periods can lead to concentrated pathogen levels in 
the environment, heavy rainfall after dry periods can 
substantially increase the transportation of pathogens 
into drinking water, which has been reported in 
Ecuador (Carlton et al. 2014) and in Canada (Chhetri 
et al. 2017). Other components of the hydrological 
system also create important diarrheal illness risks in the 
context of climate change. For example, flooding is an 
important driver of diarrheal diseases for many locations 
in South America, such as Brazil (Cesa et al. 2016) 
and Peru (Colston et al. 2020). Moreover, in the North 
American Arctic, periods of rapid snowmelt have been 
associated with increased cases of diarrhea (Harper et al. 
2011).

Other factors, such as socioeconomic conditions, 
changing recreational and consumption behaviors  
in warmer weather, adequate and appropriate access  
to water and sanitation, population demographics,  
local pathogen distribution patterns, and land-use 
patterns, not only modify the risk of waterborne  
illness but also underpin the adaptive capacity of 

Two recent developments support the feasibility of a 
swift, society-scale transition to renewable energy. The 
first is an unexpectedly rapid, nearly fivefold increase 
(4% to nearly 20%) in the fraction of the world’s 
electricity generated from wind and solar power over 
the past decade (UNEP and Bloomberg NEF 2019). The 
second is the steep decline in the cost of producing 
electricity from solar cells and wind turbines (81% and 
45% reductions, respectively) over the same period 
(Phadke et al. 2020). As more electricity is produced 
from renewable sources, these costs are expected to 
decrease still further over the next 5 years as additional 
economies of scale are realized. At the same time, 
investment in renewable energy is increasing sharply, 
and in 2021 was expected to exceed spending on oil 
and gas exploration for the first time (Murtaugh 2020). 
As a result of these developments, it is now cheaper in 
many places to produce electricity from wind and solar 
power than from any fossil fuel. The consequences of 
this shift include climate change mitigation, pollution 
prevention, health improvement, and advances in social 
justice.

3.4 Waterborne illnesses

3.4.1 How does climate change increase the risk of 
waterborne illnesses?

Associations between warming temperatures and 
increased water insecurity (Case Study 6) and 
waterborne illness have been documented globally 
(Carlton et al. 2016; Guzman Herrador et al. 2015; 
Levy et al. 2016); however, the effect size or strength 
of the association varies and is often mediated by other 
factors. One global study found that all-cause diarrhea 
increases by 7% for every degree of warming (Carlton 
et al. 2016) regardless of income or geographical 
location, illustrating the widespread risk. These 
associations, however, are complex and not always 
linear. For example, in Peru, cases of diarrhea increased 
more during warmer winter weather compared with 
a relatively smaller increase in case numbers during 
warmer summers (Checkley et al. 2000). The evidence 
base linking warming temperatures to higher incidence 
of bacterial diarrhea is particularly strong (Carlton 
et al. 2016; Levy et al. 2016); however, less evidence 
is available for viral and parasitic diarrhea (Carlton 
et al. 2016; Young et al. 2015b), although evidence 
suggests that parasitic diarrhea (e.g. cryptosporidiosis 
and giardiasis) increases with increasing temperatures 
(Jagai et al. 2009; Lal et al. 2013). Conversely, the 
available data suggest that increased risk of norovirus- 
and rotavirus-related diarrhea is associated with colder 
temperatures (Carlton et al. 2016; Levy et al. 2016).

Climate change-related increases in the duration, 
intensity, and occurrences of heavy rainfall events also 
increase the risk of waterborne illness throughout 
the Americas (Guzman Herrador et al. 2015; Levy 
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et al. 2017). Future research should examine how 
factors such as the type of microorganism, geographical 
region, season, type of water supply, water source, 
and/or water treatment measures modify the effect of 
warming temperatures and changing precipitation on 
waterborne illnesses (Guzman Herrador et al. 2015). 
Finally, changing precipitation patterns due to climate 
change can be more challenging to project than 
temperature, which has important implications for 
health (e.g. see Case Study 7).

3.4.2 What adaptation and mitigation options are 
available to reduce the risk of waterborne 
illnesses?

There is strong evidence that access to water, sanitation, 
and hygiene infrastructure reduces the risk of 
waterborne illness and has contributed to reducing the 
global burden of disease; it is, therefore, important in 
the context of climate change adaptation (Case Study 
9). For example, in Guatemala, rainfall was associated 
with fecal contamination in wells, especially where pigs 
were reared nearby (Eisenhauer et al. 2016). In Ecuador, 
inadequate access to safe drinking water was associated 
with increased rates of diarrhea after heavy rainfall, 
whereas inadequate access to sanitation was associated 
with increased diarrhea rates after dry periods (Bhavnani 
et al. 2014). In Canada and the United States, untreated 
drinking water is associated with increased waterborne 
illnesses during heavy precipitation events, which 
are projected to increase with future climate change 
(Galanis et al. 2014; Harper et al. 2020; Uejio et al. 
2017). Strategies to improve access to safe water and 
sanitation include institutional adaptation options, such 
as conducting more assessments of water resources, 
implementing climate-resilient water safety plans, 
investing in disaster risk reduction, improving delivery 
of services to the underserved, and using microfinance 
and microinsurance mechanisms to build small-scale 
infrastructure (Howard et al. 2016; Levy et al. 2018). 
Other adaptation options include technical interventions 
to reduce pathogen growth in drinking water. For 
example, sourcing water from cooler depths, designing 
systems to reduce the time that water remains in pipes, 
and painting exposed pipes and tank roofs white 
to reduce heat absorption can all reduce the risk of 
waterborne illnesses (Levy et al. 2018). Importantly, 
the alignment of the engineered solution with the 
local social, cultural, and environmental context will 
ultimately determine the success or failure of adaptation 
options (Mellor et al. 2016). More research is needed 
to investigate the extent to which adaptations such 
as improved water and sanitation access can reduce 
waterborne disease risks under future climate change 
scenarios (Levy et al. 2016).

Climate change mitigation should be considered 
alongside adaptation efforts that improve access to 
safe water and sanitation, as water and sanitation 

governments, communities, and households to reduce 
these risks in a changing climate (Levy et al. 2016, 
2018; Semenza 2020). Despite the important role that 
these factors play in altering the risk of climate-related 
waterborne illness, less than 10% of studies globally 
include variables related to socioeconomic conditions, 
access to water, type of source water, land use, 
population density, education, or human mobility  
(Lo Iacono et al. 2017).

There is clear evidence that climate change increases 
the risk of waterborne illness; however, the mechanisms 
underlying this risk are complex and research gaps 
exist. First, diarrhea is not a single disease: it can be 
caused by several different pathogens (e.g. bacteria, 
viruses, parasites) through several different transmission 
pathways (e.g. water, food, person-to-person contact), 
which makes the causal pathway from climate change 
to waterborne illness challenging to study. Furthermore, 
it is difficult to make comparisons across studies 
(Guzman Herrador et al. 2015; Kraay et al. 2020). 
Therefore, there is a need to go beyond studying 
all-cause diarrhea and to examine specific pathogens 
when possible (Levy et al. 2016). Furthermore, although 
we focus on diarrhea in this section, it is important to 
note that some waterborne pathogens cause other 
symptoms, such as vomiting, and do not cause diarrhea 
or cause other symptoms in addition to diarrhea; this 
further highlights the importance of conducting analysis 
specific to pathogens when possible. Additionally, 
the local context matters when assessing the causes 
of diarrheal illness, so the geographical disparities 
in research that exist between North America and 
Central and South America (Carlton et al. 2016; 
Guzman Herrador et al. 2015; Lo Iacono et al. 2017) 
present important challenges for understanding the 
context-specific exposure–response pathways for climate 
change-related waterborne illness in the Americas. The 
effect of local conditions also complicates comparisons. 
For instance, extreme precipitation and temperatures 
need to be defined according to local conditions, and 
therefore a wide variety of exposure variables should 
be considered in analyses and will likely vary by study 
(Guzman Herrador et al. 2015). The local nature of 
contamination events can also mask associations 
between extreme weather events in regional and 
national analyses (Guzman Herrador et al. 2015). Finally, 
data challenges exist, including concerns about data 
quality (e.g. spatial and/or temporal resolution of data, 
data accuracy), differences in environmental–social–
health data integration capabilities, reporting biases, 
and collinearity in exposures (Lo Iacono et al. 2017; 
Mellor et al. 2016). For instance, waterborne illness is 
known to be substantially underreported in surveillance 
systems, which can be a source of bias when the cause 
of underreporting is correlated with weather variables 
(e.g. during extreme events, healthcare provision can 
be impacted) (Guzman Herrador et al. 2015; Lo Iacono 
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Case Study 6 Climate change, water, and health in the Caribbean

The location, size, and geographical features of countries located in the Caribbean make this region of the world especially exposed and 
vulnerable to many of the adverse effects of climate change (Nurse et al. 2014). Caribbean countries are located in one of three geographical 
regions that have been classified by the United Nations as Small Island Developing States (SIDS) (Figure CS 6.1). This classification recognizes 
SIDS as countries with unique social, economic, and environmental challenges, and, in the context of climate change, these areas face 
heightened challenges in protecting and preserving the health of their citizens. In the three SIDS regions from 1966 to 2015, 60% of all 
climate-related disasters, 90% of all deaths, 79% of all affected persons, and almost 90% of all damage costs occurred in the Caribbean  
(PAHO 2019).

Climate change-driven events, such as flash flooding and hurricanes, coupled with climate-sensitive vector-borne diseases, place additional 
burdens on already overburdened SIDS healthcare systems that have limited human and capital resources to adequately care for the populations 
they serve. This situation is further compounded by the fact that the healthcare delivery systems in many Caribbean SIDS are situated in 
coastal areas, which are most vulnerable to hurricanes, floods, and damage to vital supporting amenities such as water and electricity supplies 
(Figure CS 6.2). If a predicted sea level rise of more than 1 meter materializes by 2100, this will cause significant and profound damage to 
infrastructure, which in many Caribbean islands is predominately located in or near coastal areas (UNDP 2010).

Ocean warming, which is one key feature of climate change, has led to an increase in the severity of hurricanes and precipitation events in 
the Caribbean. From 1966 to 2015, 449 severe weather events were documented that inflicted significant harm and damage to the health, 
livelihoods, and economies of those living in the Caribbean (EM-DAT 2018). For example, in Grenada, the total damage caused by Hurricane 
Ivan in 2004 was estimated to exceed 2.4 billion Eastern Caribbean dollars, an amount that was twice the value of the island’s gross domestic 
product in that year (Government of Grenada 2017). Similarly, the passage of Hurricanes Irma and Maria in 2017 resulted in cumulative losses 
of at least US$5.4 billion in Anguilla, the Bahamas, the British Virgin Islands, Saint Maarten, and the Turks and Caicos Islands (Asariotis 2018).

Figure CS 6.1 Map of Caribbean countries classified as SIDS by the United Nations.

services contribute to GHG emissions (Dickin et al. 
2020; Howard et al. 2016). There are opportunities to 
reduce emissions when implementing new systems, 
maintaining existing systems, and developing new 
technologies, for example by improving pumping 
efficiency, optimizing aeration in wastewater treatment, 
reducing emissions during removal of nutrients from 

wastewater, using renewable energy sources, and 
developing within-system energy generation (Howard 
et al. 2016). There is also potential to capture methane 
from wastewater treatment plants, which could 
potentially confer multiple benefits including GHG 
mitigation, cleaner water, and reduced tropospheric 
ozone, as methane is an ozone precursor (GMI 2013).
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Water insecurity is also projected to increase in the Caribbean as the impacts of climate change become more pronounced. Longer dry seasons, 
changing precipitation patterns, and unpredictable extreme weather events have caused severe strain on agricultural systems, leading in many 
instances to devastating losses. Furthermore, the occurrence of unprecedented droughts, such as the one that occurred in Grenada in 2010 
or the droughts in Haiti and Jamaica since 2015, has further heightened the risk of water insecurity in many Caribbean countries (WHO et al. 
2020).

Overall, the impact climate change will have on the health of those living in the Caribbean is anticipated to become progressively worse over 
time. Morbidity and mortality numbers are expected to rise because of the increased number of persons impacted by extreme weather-related 
events and a concomitant rise in the incidence of climate-driven waterborne and vector-borne diseases. Sadly, this is happening against the 
backdrop of already weakened and overburdened healthcare infrastructure that will be tasked with taking care of increasing numbers of 
persons adversely affected by climate change.

Figure CS 6.2 St. Georges’ General Hospital, Grenada (photograph: Martin Forde).

Case Study 7 Climate change modelling in Central America: implications for decision-makers in the context of 
health adaptation

Central America represents a unique climatic region of complex topography between the Pacific Ocean and the Caribbean Sea. Large-scale 
natural climate processes originating in these two bodies of water greatly influence the continental climate, including the El Niño–Southern 
Oscillation, the North Atlantic Subtropical High, the Intertropical Convergence Zone, and the trade winds that impact the Caribbean Low-
Level Jet. The region experiences high levels of climate variability at different spatial and time scales, and extreme events associated with 
natural weather phenomena often produce severe environmental and socioeconomic impacts (Hidalgo and Alfaro 2012; Hidalgo et al. 2013). 
Temperature has increased significantly in many parts of Central America, with trends in extreme temperature indices over the past 25 years 
suggesting a higher frequency of warm days/nights and a lower frequency of cold days/nights (Alfaro-Córdoba et al. 2020; Hidalgo et al. 2019; 
Stephenson et al. 2014). Changes in regional precipitation trends are generally less consistent (Stephenson et al. 2014), but even in the absence 
of significant precipitation changes, increased temperatures can lead to reduced water availability, drier soils, and increased aridity (Alfaro-
Córdoba et al. 2020; Hidalgo et al. 2017), which can impact agricultural activities, the environment, and the potential for wildfires—all of which 
have important implications for human health. 

Climate and hydrological models of the region project that temperatures in Central America will increase by 1–2°C by mid-century and by 
as much as 4°C at the end of the century compared with the baseline period (1950–1999), whereas precipitation is not likely to change 
considerably over the first half of the century and may decrease by about 10% towards the end of the century, especially in the northern part 
of Central America (Hidalgo and Alfaro 2012; Hidalgo et al. 2013). Aridity has been increasing in isolated spots in Central America (Alfaro-
Córdoba et al. 2020), and the conditions projected by these models suggest that aridity may increase significantly, particularly for northern 
countries. This may have important socioeconomic impacts, especially considering that agriculture is the principal productive sector in most 
Central American economies, which could translate into important impacts on food security, nutrition, and mental health. A north–south 
socioeconomic gradient already exists in the region, and climate change may exacerbate this contrast (Hidalgo and Alfaro 2012), resulting 
in increased inequity, higher levels of migration, and increased vulnerability to disasters and poverty (Hidalgo 2021), with compounding and 
cascading health impacts. 
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3.5 Foodborne illnesses

3.5.1 How does climate change increase the risk 
of foodborne illnesses?

Climatic conditions are often linked to foodborne 
illness, including clear associations between the 
prevalence of foodborne pathogens and temperature, 
precipitation, extreme weather events, and ocean 
warming and acidification (Fleury et al. 2006; Hellberg 
and Chu 2016; Lake and Barker 2018; Liu et al. 
2013; Semenza et al. 2012b, 2012a). Even a 1°C 
increase in average ambient temperatures can result in 
significant food safety concerns (Smith et al. 2015), and 
increasing temperatures and extreme weather events 
are considered among the top factors influencing food 
safety (Charlebois and Summan 2015).

Agricultural activities – including gathering/catching, 
growing, rearing, and harvesting foods and livestock  
– are impacted by climate change. For instance,  
warming temperatures and changes in precipitation  
can increase the release of pathogens from livestock  
into the environment (Dickin et al. 2016; Smith and 
Fazil 2019). Indeed, many livestock animals carry and 
shed greater numbers of enteric pathogens in warmer 
temperatures (Keen et al. 2003; Pangloli et al. 2008; 
Venegas-Vargas et al. 2016), and changing precipitation 
patterns can increase manure run-off, both of which 
can increase pathogen abundance in the surrounding 
environment, crops, and, consequently, food. Increased 
temperature stress or alterations to livestock housing 
conditions in response to climate change could 
also prompt producers to increase antimicrobial 
use in food-producing animals, which could lead to 
increases in antimicrobial-resistant foodborne illnesses 
(MacFadden et al. 2018; WHO 2017). Climate change 
can also impact wildlife populations (e.g. rodents, deer, 
insects) in ways that can increase foodborne pathogen 
transmission (Agunos et al. 2014). For example, climate 
variables affect fly population density (Goulson et al. 
2005; Ngoen-klan et al. 2011), and flies can be carriers 
of foodborne pathogens, such as Campylobacter spp. 

(Hald et al. 2008). In Ontario, Canada, a 28–30%  
increase in campylobacteriosis incidence in humans  
is projected by 2050 because of climate-related  
changes in fly population size and activity (Cousins  
et al. 2019).

Climate change can also increase the prevalence of 
pathogens during food processing and distribution 
activities. For example, warmer air temperatures are 
associated with the contamination of poultry with 
Campylobacter spp. in Canadian processing and retail 
environments (Smith and Fazil 2019). Additionally, 
pre-existing contamination can proliferate if food is 
stored at inappropriate temperatures. For instance, 
extreme weather events can result in power outages 
that disrupt refrigeration and increase foodborne 
illness risks (Kosa et al. 2011, 2012; Marx et al. 2006), 
and warming air temperatures can make traditional 
food storage methods unsafe in some Indigenous 
communities (Dudley et al. 2015; IPCC 2019a; Parkinson 
and Butler 2005). Humidity and precipitation also play 
important roles in food safety. For example, during 
the processing of maize and cereal-grain products, 
humidity is associated with increased prevalence of 
microorganisms, such as fungi that produce mycotoxins 
(Duarte et al. 2010; Patriarca and Fernández Pinto 
2017). Projections indicate that the prevalence of 
mycotoxins will increase with climate change (Smith 
et al. 2015). Additionally, food, especially produce, 
can become contaminated when contaminated water 
is used during processing, production, irrigation, and 
growing (Dickin et al. 2016). The use of contaminated 
water may become more common as climate 
conditions lead to increases in the prevalence of 
waterborne pathogens and if sanitation infrastructure is 
overburdened or damaged because of extreme weather 
events (see Section 3.4).

Finally, climate change also impacts safe food 
preparation and consumption. For instance, 
climate-related behavioral changes can increase 
foodborne pathogen exposure through both higher-risk 

Some current adaptation strategies are guided by the results of climate model simulations. However, before investing resources in a 
sophisticated modelling effort, stakeholders and decision-makers must first decide whether the modelling approach is consistent with local 
goals, resources, and adaptative capacity (Hidalgo 2021; Nissan et al. 2019). It is also important to critically examine modelling results and 
consider the uncertainty in these estimations before using them to inform management decisions. This is especially true in a region of scarce 
resources such as Central America, where optimization of adaptation resources is critical (Hidalgo 2021; Nissan et al. 2019). If a modelling 
approach is justified, decision-makers should be aware that planning horizons could differ from the modelling horizons (Nissan et al. 2019); for 
example, relatively short-term decisions might be necessary, but clear climate trends may not arise until longer periods are analyzed because 
natural climate variability may obscure long-term trends (Hidalgo 2021).

In addition, it is also important that decision-makers consider social factors such as health status, immigration, poverty, population growth, and 
economic development, which can increase vulnerability to extreme weather events (Hidalgo 2021; Hidalgo and Alfaro 2012). Transdisciplinary 
collaboration is needed between institutions that generate climate forecasts and the end users of those forecasts to ensure that modelling 
exercises match the needs of decision-makers, that relevant results are made available both inside and outside the health sector, and that 
vulnerabilities are taken into account (Hidalgo 2021; Nissan et al. 2019). Climate modelling is a dynamic and constantly changing effort, and 
as future trends evolve and new data and techniques become available, new and ongoing analyses will need to be performed to improve the 
accuracy and timeliness of results to inform resource management and adaptation planning (Hidalgo 2021) to support and protect human 
health.
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3.5.2 What adaptation and mitigation options are 
available to reduce foodborne illnesses?

Various public health measures are known to 
reduce microbial contamination of food, presenting 
opportunities to expand climate-related monitoring 
and response initiatives and enhance existing programs 
to support climate change adaptation. Promising 
adaptation strategies include Hazard Analysis and 
Critical Control Point approaches, utilizing new 
scientific detection tools for various pathogen–food 
combinations, improved and better-integrated 
epidemiological surveillance, new tools for monitoring 
pathogens and disease (e.g. integrated environment 
and health monitoring, such as FoodNet in Canada), 
strengthened animal health surveillance, integration 
of food safety considerations into existing emergency 
preparedness plans, and improved coordination among 
sectors. Improved modelling techniques and better 
integration of climate, food, environment, and other 
data sources into surveillance programs can support 
more sophisticated analyses, enhancing the ability 
to predict or project emerging food safety risks. For 
instance, when warmer water temperatures or a strong 
El Niño climate pattern are predicted, this could trigger 
public health responses including adjustments to 
industrial practices, modified regulatory policies, and 
public outreach to reduce the risk of seafood-related 
illnesses (Martinez-Urtaza et al. 2010; Smith et al. 
2015). Additional public health responses can include 
harvesting seafood from deeper and colder waters to 
reduce pathogen levels at harvest (Martinez-Urtaza 

cooking preparation methods (e.g. barbeques) and 
consumption patterns (e.g. picnics, food preferences) 
(Liu et al. 2013; Milazzo et al. 2017; Ravel et al. 2010). 
Furthermore, the risks of climate-related foodborne 
illnesses will vary across the Americas due in part 
to regional and local consumption preferences. For 
example, the risk of seafood-associated foodborne 
illness will likely be higher in coastal regions where 
seafood consumption is common (IPCC 2019a) (Case 
Study 8).

Although increasing evidence confirms the pathways 
through which climate change can impact food safety, 
less is known about the projected magnitude of those 
impacts. Few studies have examined the relationships 
between climate change and enteric illnesses that are 
directly attributed to food consumption rather than 
other exposure pathways such as contaminated drinking 
water, contact with animals, and human-to-human 
transmission. Furthermore, the exposure pathways 
linking climate change to foodborne illness are complex. 
For instance, flooding and irrigation may be associated 
with increased run-off and contamination of crops; 
however, increased rainfall could both increase risks 
of contamination due to more flooding and/or reduce 
risks due to less irrigation. Therefore, analyses that 
capture the complexity of food production systems in a 
particular context or location are required to understand 
how climate change will ultimately affect foodborne 
public health risks under different adaptation options 
(Government of Canada 2017; Romero-Lankao et al. 
2014).

Case Study 8 Climate change and foodborne illness linked to seafood in the Americas

The impact of climate change on warming water temperatures is expected to increase the risk of foodborne illness due to contaminated 
seafood. Specifically, consumption of raw or undercooked shellfish contaminated with pathogenic Vibrio bacteria is projected to increase 
throughout the Americas as marine environments become warmer and more suitable for these pathogens. Water temperature is the 
predominant factor impacting Vibrio growth, with most species able to proliferate at temperatures of 15°C or above (Baker-Austin et al. 2018; 
Young et al. 2015a).

Exposure to V. parahaemolyticus, V. vulnificus, and V. cholerae can result in gastrointestinal illness, including diarrhea, nausea, abdominal 
cramps, fever, severe dehydration, and, in rare instances, sepsis. Severity of symptoms can range from self-limiting to life-threatening depending 
on the species and virulence of the particular strain. For example, although less common than V. parahaemolyticus, V. vulnificus infections are 
far more severe, accounting for 95% of fatalities associated with seafood consumption in the United States (Froelich and Noble 2016). 

Outbreaks of Vibrio spp. infections linked to shellfish have been documented throughout coastal areas of North America and are projected to 
increase over time. For example, in British Columbia, Canada, models indicate that the risk of V. parahaemolyticus in oysters may increase by 
as much as 45% by 2060 (Smith et al. 2015), while in recent years V. cholerae has been detected with increased frequency in coastal areas of 
western Canada (Banerjee et al. 2018). Outbreaks of V. parahaemolyticus linked to oysters have also been documented in Alaska, United States, 
where mean water temperatures are expected to continue increasing over time, supporting the growth of Vibrio pathogens that historically did 
not thrive in this region (McLaughlin et al. 2005). 

In South America, V. parahaemolyticus and V. vulnificus outbreaks linked to seafood have been documented since the 1970s in countries 
including Brazil, Venezuela, Colombia, Ecuador, Peru, Chile, and Uruguay (Fuenzalida et al. 2006; Raszl et al. 2016). However, given the lack 
of formal monitoring programs and the fact that Vibrio spp. infections are not notifiable diseases throughout most of South America, it is 
probable that cases have been underreported on the continent (Raszl et al. 2016). Importantly, El Niño events and warming ocean waters have 
been linked to increases in V. cholerae levels and to V. parahaemolyticus outbreaks on the Pacific coast of South America, highlighting the 
potential for climate change to increase the risk of foodborne illness through impacts on ocean temperatures (Gil et al. 2004; Raszl et al. 2016). 
In Mexico, the risk of V. parahaemolyticus in oysters was projected to be 11 times higher under a high emissions scenario (RCP8.5) than a low 
emissions scenario (RCP2.6) by the end of the century; however, this risk could be substantially lowered with adaptation measures, including 
improving temperature control post-harvest (Ortiz-Jiménez 2018).
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changes, as well as the availability of suitable habitat, 
may lead to inaccurate projections.

Mosquito-borne illnesses

To date, much research has focused on the current 
and projected impacts of climate change on mosquito 
populations, given their role in the transmission of 
malarial parasites and the viruses causing dengue, West 
Nile disease, and chikungunya. The geographical range 
of chikungunya is projected to expand into Mexico and 
the United States by 2050 (Tjaden et al. 2017) and into 
southern coastal British Columbia by the end of the 
century (Ng et al. 2017).

Climate change will also have substantial impacts on 
the transmission of dengue (Ebi and Nealon 2016), 
with North America projected to experience one of 
the largest percentage increases in exposure to the 
vector globally (Messina et al. 2019; Monaghan et al. 
2018; Proestos et al. 2015). The northern geographical 
range of the dengue vector in the Americas is limited 
in part by low temperatures (Díaz-Castro et al. 2017), 
so climate warming is projected to create a general 
northward range expansion (Colón-González et al. 
2013; Eisen and Moore 2013). Specifically, northward 
geographical expansion into the southern United States 
and extended seasonal activity of the dengue vector 
is projected by mid-century; however, the permanent 
establishment of the vector in the mainland United 
States may be prevented by low winter temperatures 
(Butterworth et al. 2017). In Mexico, increased dengue 
cases are projected for most states under various climate 
change scenarios, particularly in currently endemic areas 
(Colón-González et al. 2013). Southward expansion 
of the vector in South America is also projected by 
mid-century (Campbell et al. 2015; Messina et al. 2019; 
Proestos et al. 2015). Colón-González et al. (2018) 
estimated that limiting global warming to 2°C could 
reduce dengue in Latin America by about 2.8 million 
cases per year by the end the century compared with 
a no-policy scenario with warming of 3.7°C; limiting 
warming to 1.5°C could reduce dengue incidence by 
3.3 million cases per year.

West Nile virus continues to spread across North 
America, and its geographical distribution will continue 
to expand throughout the century as a result climate 
change (Harrigan et al. 2014). Under various climate 
change scenarios, northern locations in the United 
States (e.g. Colorado, Connecticut, Illinois) are projected 
to experience increased abundance of the West Nile 
vector, whereas currently warm areas (e.g. El Paso, 
Texas, and Chandler Heights, Arizona) may become 
too hot for mosquito development and survival by 
mid-century (Brown et al. 2015). In the southern United 
States, the mosquito season is projected to start several 
weeks earlier and end several weeks later in most areas, 
although decreased population densities are projected 

et al. 2010), implementing more stringent post-harvest 
time–temperature controls to limit pathogen growth, 
and applying post-harvest processes such as mild heat, 
high hydrostatic pressure, and freezing that can reduce 
pathogen levels while generally retaining the products’ 
original raw sensory characteristics (Martinez-Urtaza 
et al. 2010; Smith et al. 2015).

3.6 Vector-borne illnesses

3.6.1 How does climate change increase the risk of 
vector-borne illnesses?

Vector-borne diseases transmitted by arthropod vectors 
(e.g. ticks, mosquitoes) have increased in incidence 
and distribution in the Americas. Most vectors, along 
with the pathogens they carry, are highly sensitive to 
environmental conditions, and thus will be impacted 
by climate change. The location, seasonal timing, and 
abundance of vectors directly depend on weather and 
climate factors, including high and low temperatures, 
which impact vector growth and mortality rates, as 
well as temperature and humidity levels, which affect 
the ability of vectors to find hosts (Ogden 2017). In 
addition, many vector-borne pathogens are zoonotic, 
and climate changes may impact host–pathogen–vector 
interactions, resulting in complex, interconnected, and 
multidirectional effects. However, the detection of 
changes in vector-borne diseases and the attribution of 
those changes to the effects of climate change remain 
challenging (Campbell-Lendrum et al. 2015) because 
of the complexity of ecological and social systems that 
incorporate many diverse and interconnected factors, 
some of which are climate-dependent (Ebi et al. 2017; 
Ogden 2017; Ogden and Lindsay 2016).

Climate change may also indirectly affect vector 
densities and the frequency of human–vector 
contact through human behavior and responses to 
environmental changes, particularly in Latin American 
countries. For example, a decrease in water availability 
due to climate change may require an increase in 
water storage during dry periods, leading to an 
increase in breeding sites for some vectors such as 
Aedes mosquitoes, and thus more mosquito-borne 
transmission of diseases (Smith et al. 2014). Overall, 
climate change is projected to increase human exposure 
to disease vectors; however, these projections are 
subject to both overestimations and underestimations 
(Ogden 2017). For example, when mathematical 
models do not control for climate-independent factors, 
projections may overestimate exposure increases. 
Conversely, projections can produce underestimates 
when models use current distributions of vector-borne 
diseases and current vector control measures that are 
not climate-resilient, or if models do not incorporate 
indirect impacts of climate change on factors affecting 
vector control (Ogden 2017). Furthermore, models 
that do not consider host distribution and subsequent 
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the future benefits of improved socioeconomic status on 
malaria risk (Campbell-Lendrum et al. 2015; Franklinos 
et al. 2019; Parham et al. 2015).

Tick-borne diseases

The geographical distribution and incidence of 
tick-borne diseases are also increasing in the Americas 
(Bouchard et al. 2019). Climate change is projected to 
create longer seasonal activity and generally expand the 
number of climatically suitable northern habitats for 
ticks in North America (Ogden et al. 2014), increasing 
the risk of human exposure to tick-borne diseases. 
The incidence and geographical distribution of Lyme 
disease has increased in Canada and the United States 
as climate change affects both the distribution and 
abundance of ticks (Eisen et al. 2016; Ogden et al. 
2014). In Ontario, the northward expansion of the 
geographical range of tick populations over the past 
decade has been associated with observed increases in 
temperatures (Cheng et al. 2017), and increased Lyme 
disease cases and tick encounters have been associated 
with temperature changes in New York State, United 
States (Lin et al. 2019). In the United States, the season 
for Lyme disease transmission is projected to become 
longer due to climate change, with larger impacts under 
high emissions scenarios and more substantial impacts in 
the southerly mid-Atlantic states than the Northeastern 
and upper Midwestern states (Monaghan et al. 2015). 
In North America, there are different regional predictions 
for the risks of tick-borne disease under climate change. 
For example, in Minnesota, the risk of Lyme disease 
is projected to increase under a warming climate and 
an increasingly deciduous landscape by 2100, with 
the highest increase in projected risk in northeastern 
counties (Robinson et al. 2015). In Canada, tick vectors 
are projected to significantly increase under various 
climate change scenarios in Nova Scotia, areas of 
New Brunswick and Quebec, southern Ontario, and 
southern Manitoba; however, lower emissions scenarios 
are projected to slow tick invasion after the 2030s 
(McPherson et al. 2017). Moreover, future modelling 
must not only consider the impact of climate change 
on tick vectors, but must also include effects on the 
different hosts that serve as reservoirs for viruses. 
For example, in Quebec, the northern range of the 
white-footed mouse (an important reservoir host) is 
projected to increase by 2050 under three climate 
scenarios (Roy-Dufresne et al. 2013).

Reduviid-vectored diseases

Chagas disease is prevalent in the southern United 
States, Mexico, Central America, and South America. 
It is transmitted by triatomine bugs (commonly known 
as kissing bugs) infected with the protozoan parasite 
Trypanosoma cruzi. The breadth of the triatomines’ 
niche is projected to expand under many climate change 
scenarios (Carmona-Castro et al. 2018; Garza et al. 

during the summer in the southern-most areas by the 
middle of the century (Morin and Comrie 2013). Across 
various climate change scenarios, an increase in the 
incidence of West Nile virus infections is predicted for 
the Canadian prairies because of a longer mosquito 
season and a northward range expansion of mosquito 
vectors (Chen et al. 2013). Although West Nile virus has 
been found in Central and South America, the spread of 
the virus has not yet been accompanied by widespread 
cases in humans and horses nor significant avian 
mortality, so the current impact of climate change on 
West Nile disease in the region is unclear (Paz 2015).

Malarial vectors are projected to cover over 46% of 
the South American continent by 2070 (Laporta et al. 
2015), but the specific impact of vector expansion 
will vary geographically. For example, although the 
length of the malaria transmission season is projected 
to increase in Mexico, Central America, and southern 
Brazil, decreases are predicted in parts of Brazil and 
Bolivia (Caminade et al. 2014). Over the next 50 years, 
suitable habitat for vectors that transmit malaria is 
generally projected to remain in the Amazon interior, 
on the Guiana Shield coasts, in northern Colombia, 
and along the southern border between Colombia 
and Venezuela (Alimi et al. 2015); the vector habitat 
is also expected to increase to higher altitudes (Siraj 
et al. 2014) but may decrease in parts of Brazil, 
Guyana, and Colombia (Alimi et al. 2015). However, 
projecting malaria disease burdens is challenging, given 
the complex interactions among host, vector, and 
environmental factors. For instance, in South America, 
increasing health initiatives, higher temperatures, lower 
water availability, and biome modifications are projected 
to reduce the suitable habitat for vector growth and 
thus decrease the distribution and abundance of the 
current primary malaria vector, Anopheles darlingi 
(Laporta et al. 2015). However, the geographical 
range of climate-generalist mosquitoes (An. albitarsis 
complex) is projected to significantly expand, so 
these mosquitoes could potentially become a more 
important malaria transmission vector (Laporta et al. 
2015). For North America, climate change is expected 
to increase the geographical range of malaria vectors 
in the United States (Caminade et al. 2014), although 
future projections of malaria transmission in the country 
will depend on social, economic, and environmental 
factors, including the efficacy of health interventions. 
Improvements in social development and public health 
programming can reduce the burden of vector-borne 
diseases through factors such as transmission prevention 
and access to healthcare, but it is difficult to incorporate 
these developments into disease transmission models. 
In some models, gross domestic product per capita has 
been used as an indicator of socioeconomic conditions, 
which in combination with climatic variables have been 
used to project the future distribution of malaria. These 
models show that climate change effects may negate 
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clothing, eliminating peridomestic mosquito larval 
sites, reducing outdoor activities at peak times); and 
(ii) regional management and mosquito-targeting 
interventions (e.g. larvicides, vaccination of animal 
reservoirs, modification of human-made larval sites) 
(Hongoh et al. 2016). New prevention, surveillance,  
and control efforts are needed to support adaptation  
to the geographical range expansions and increases  
in the incidences of vector-borne illness that are 
expected because of climate change (Ebi and Nealon 
2016). For example, in Ecuador, an integrated climate–
dengue surveillance system producing high-resolution 
risk data is currently being used to improve seasonal 
early warnings for dengue (Lowe et al. 2017; 
Stewart-Ibarra and Lowe 2013). On the border between 
Ecuador and Peru, a multinational network launched 
a climate–malaria surveillance system (Krisher et al. 
2016) and achieved local elimination of malaria, 
demonstrating the potential and power of cross-country 
collaborations (WMO and WHO 2016). Infection control 
and prevention programs, including vector control, 
eradication, reliable water and sanitation services, and 
integrated longitudinal surveillance, are vital public 
health strategies that will continue to be important tools 
for adapting to climate change impacts on vector-borne 
disease (Case Study 9).

2014), with significant increases in human exposure 
expected both in rural and in urban areas in North 
America (Carmona-Castro et al. 2018). A significant 
northern increase in range is also anticipated (Garza 
et al. 2014). However, there may be regional differences 
in exposures and range expansions, as the predicted 
geographical distributions of two endemic vectors of 
Chagas disease with different thermal preferences, 
Mepraia gajardoi and M. spinola, vary depending on the 
climate change scenario (Garrido et al. 2019).

3.6.2 What adaptation and mitigation options are 
available to reduce vector-borne illnesses?

Current adaptations to prevent climate-related  
increases in vector-borne diseases involve reducing 
environmental risk of exposure and promoting  
individual preventative behaviors to reduce human–
vector contact, both of which rely on comprehensive 
vector and disease surveillance (e.g. Hinckley et al. 
2016; Keesing and Ostfeld 2018; Sommerfeld and 
Kroeger 2015). In Quebec, interventions to reduce the 
incidence of West Nile disease that were identified  
as most acceptable among stakeholders include:  
(i) individual protection (e.g. frequently inspecting 
window screen integrity, wearing light-colored  

Case Study 9 Climate change, health, and the GEOHealth Hub Centered in Peru

Peru is highly vulnerable to the health impacts of climate change. The Peruvian National Institute of Statistics and Informatics projects that there 
will be a 1°C increase in temperature and a 10% increase in precipitation variability in the country by 2030. This is particularly concerning given 
that 71% of all tropical glaciers are located in Peru, and increases in temperature threaten to decrease the availability of water in the future. 
Furthermore, Peru experiences the effects of the El Niño–Southern Oscillation, a climate phenomenon that has become frequent and intense in 
recent decades, contributing to heavy rains and flooding on the north coast and drought in the southern areas of the country. 

Given these projections, Peru is poised to experience several climate-related health impacts. For example, the habitat suitable for Aedes aegypti, 
the mosquito vector of the dengue virus, is expected to expand as a result of climate change. Dengue fever, a climate-sensitive febrile illness 
caused by infection with the dengue virus, is endemic in parts of Peru, with transmission of the virus being well documented since its re-
emergence in the early 1990s. Epidemics of the virus linked to the El Niño–Southern Oscillation and flooding have been observed. For example, 
in Piura in 2017, there were 7,239 confirmed cases of dengue and 34 recorded deaths; however, it is estimated that there could have been 
as many as 30,000 cases, but many were likely not documented because of limited healthcare infrastructure and challenges in the public 
health response. In 2020, the COVID-19 pandemic imposed additional strain on healthcare resources in regions such as Iquitos in the Peruvian 
Amazon, which were already experiencing increased incidences of dengue fever.

Climate change may also impact diarrheal disease in Peru. A national-level impact assessment of routine rotavirus vaccination against childhood 
diarrhea found that the number of clinical visits for childhood diarrhea declined when rotavirus vaccinations were accompanied by improved 
water and sanitation initiatives (Delahoy et al. 2020). These findings demonstrate the success of multifaceted adaptation methods to address 
complex climate-related health challenges; such approaches may become increasingly important features of vulnerability assessments, 
mitigation planning, and public health programming as temperatures increase and El Niño–Southern Oscillation events become more intense 
due to climate change (Delahoy et al. 2020).

Further research has investigated associations between temperature changes and El Niño–Southern Oscillation events and other non-infectious 
health outcomes, including those related to reproductive health. In the Andean region (Molina and Saldarriaga 2017) and in Lima, Peru (Tapia 
et al. 2021), increased temperatures have been associated with lower birth weights. 

Peru has several public and private institutions with dedicated climate change research initiatives, including the Universidad Peruana Cayetano 
Heredia (UPCH), located in the capital city of Lima. With support from the Fogarty International Center of the National Institutes of Health, 
UPCH developed a regional program in 2015, the “GEOHealth Hub Centered in Peru” (www.geohealthperu.org), to support collaborative 
research in environmental health. The program team works with partners at Emory University, Johns Hopkins University, and the University of 
Georgia to research health issues related to indoor and outdoor air pollution, water contamination with arsenic, and climate change. UPCH also 
hosts CLIMA, a center devoted to promoting and developing research at local, regional, and global scales on the impact of climate change on 
human, environmental, and ecosystem health in Latin America. The successes of the GEOHealth Hub Centered in Peru and CLIMA demonstrate 
how academic and scientific institutions can develop research capacity, both to understand climate change impacts on human health and to 
inform locally specific adaptation and mitigation strategies. 

http://www.geohealthperu.org/
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disruption of transportation systems and a consequent 
reduction in access to retail foods (French et al. 2020; 
Palko and Lemmen 2017). In Northern Canada, winter 
roads provide seasonal access to important goods and 
services, including food. However, as a result of climate 
change, predicted weather conditions will no longer be 
suitable for seasonal construction of these roads by mid- 
or late-century in many locations in Ontario, Canada 
(Hori et al. 2018).

In terms of food production, climate change is 
projected to impact nutrient (e.g. vitamins B1, B2, B5, 
and B9) availability. Increasing CO2 concentrations are 
expected to increase the synthesis of carbohydrates 
and decrease the content and density of other key 
macronutrients and micronutrients in agricultural, fish, 
and seafood products (Dong et al. 2018; Macdiarmid 
and Whybrow, 2019). For example, zinc, iron, and 
protein concentrations can be reduced by 3–15% when 
wheat, rice, and legumes are grown in conditions with 
elevated CO2 (550–690ppm) (Myers et al. 2014, 2017). 
For rice, research has also shown that increased CO2 
concentrations can result in a decline of vitamins B1, B2, 
B5, and B9 by an average of 12–30% (Zhu et al. 2018). 
Similar trends have been observed for vegetables, with 
reductions in iron, magnesium, and zinc ranging from 9 
to 16% in elevated CO2 conditions (Dong et al. 2018). 
Importantly, changes in nutrient availability are expected 
to differ by geographical region under climate change, 
with some areas projected to have more substantial 
reductions as a result of agricultural productivity declines 
and CO2-related nutrient decreases. For example, 
in North America, reductions in zinc availability are 
projected to be greater than the global average (Beach 
et al. 2019). In addition to nutrient deficiencies in food 
crops, elevated CO2 also has implications for many 
livestock animals, which represent an important source 
of protein globally. Livestock are also vulnerable to the 
health effects of decreased nutrients in grazing crops, 
which in turn has impacts on the human food system, 
as the quality and quantity of animal-based proteins are 
reduced (Ebi and Loladze 2019).

These projected decreases in nutrient availability 
have significant health repercussions: for example, 
when applied to current diets, hundreds of millions 
of people globally will be at risk of zinc, iron, and/or 
protein deficiencies, and the existing deficiencies of 
an estimated two billion people will be exacerbated 
(Myers et al. 2017). In particular, women of childbearing 
age are often most affected by iron deficiency and 
anemia. Zinc and iron deficiencies increase the risk 
of several health outcomes, and modelling suggests 
that some countries in the Americas (e.g. Bolivia, El 
Salvador, Ecuador, Guatemala, Haiti, Honduras) will 
experience a particularly high burden of zinc and 
iron deficiency-related disease compared with other 
countries (Weyant et al. 2018). Several negative health 

3.7 Nutrition and food security

3.7.1 How does climate change increase the risk of 
undernutrition and food insecurity?

Without mitigation and adaptation efforts, climate 
change is projected to result in a negative net impact 
on food systems throughout the Americas (IPCC 2019b; 
Mbow et al. 2019; Porter et al. 2014; Smith et al. 
2014; Springmann et al. 2016b; Zabel et al. 2019, 
2021). Warming temperatures, changing precipitation 
patterns, and extreme weather are expected to lead 
to net reductions in staple crop yields, including yields 
of vegetables, legumes, fruits, nuts, and seeds, and 
may also hinder livestock production, lower nutrient 
content in agricultural commodities, and contribute 
to increasing global food prices (Alae-Carew et al. 
2020; Mbow et al. 2019; Scheelbeek et al. 2018). 
These anticipated changes have important food and 
nutritional security implications (IANAS 2017a). Food 
insecurity is associated with many negative physical and 
mental health outcomes, including non-communicable 
disease conditions, such as obesity, type 2 diabetes, 
heart disease, oral health issues, and depression 
(Jessiman-Perreault and Mcintyre 2017; Mcleod and 
Veall 2006; Muldoon et al. 2013; Tarasuk et al. 2016). 
As such, climate change impacts on food and nutritional 
security are often ranked among the top climate change 
threats in the Americas (CCA 2019; Richards et al. 
2016).

In the Americas, climate change is projected to reduce 
overall caloric availability by the year 2050 (Springmann 
et al. 2016b). In most countries, reduced availability 
of nutrient-dense fruits and vegetables will lead to an 
increase in undernutrition, particularly for children, as 
well as a net increase in mortality (Fanzo et al. 2018). 
These projected trends are particularly pronounced in 
upper middle income and high income countries such 
as the United States, Canada, and Brazil, where reduced 
fruit and vegetable consumption is expected to result in 
additional climate-related deaths due to coronary heart 
disease, stroke, and certain types of cancer (Springmann 
et al. 2016b).

Climate change-related net decreases in food availability 
will likely lead to increased food prices for fruits, 
vegetables, and cereals: for example, globally, cereal 
prices are projected to increase by as much as 29% by 
2050 (Mbow et al. 2019). Increased food prices can 
force consumers, especially those experiencing low 
socioeconomic conditions, to purchase lower-cost, 
energy-dense foods, which often have negative 
nutrition and health consequences (Gibson et al. 
2004; Lake et al. 2012; Lock et al. 2009; Marushka 
et al. 2017). Food availability is also linked to physical 
access to food, which can be markedly impacted by 
extreme weather events, for example through the 
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defenses (Aljbory and Chen 2018; Kant et al. 2015; 
War et al. 2012) and are also used as foraging cues by 
natural enemies of herbivores (McCormick et al. 2012; 
Vet and Dicke 1992). The release of these compounds 
has been shown to vary under different climate change 
scenarios (Arneth and Niinemets 2010; Peñuelas and 
Straudt 2010), and thus will influence herbivores as 
well as their parasitoids and predators. Similarly, the 
quantity and quality of nectar produced by plants can 
vary in response to climate change (Erhardt et al. 2005; 
Takkis et al. 2015), which will impact pollinator success. 
Furthermore, increasing levels of GHGs may reduce the 
persistence of plant volatiles (McFrederick et al. 2009), 
with the potential to alter interspecific interactions at 
all trophic levels. However, considerably more data are 
needed to reasonably predict effects, as the responses 
at all levels will vary depending on the species, especially 
for highly domesticated crop species with lower genetic 
variability.

The impacts of climate change on biodiversity loss 
will also increase risks to food and nutrient security 
(Romero-Lankao et al. 2014; Rose et al. 2001). For 
instance, global estimates suggest that climate-related 
declines in fish harvests (IPCC 2019a) will leave 
845 million people vulnerable to deficiencies in iron, 
zinc, and vitamin A, as well as 1.4 billion people 
vulnerable to deficiencies in vitamin B12 and long-chain 
omega-3 polyunsaturated fatty acids by 2050 (Golden 
et al. 2016). However, such impacts will not be 
equitably distributed, as Indigenous Peoples who 
depend on the land and waters for sustenance are 
particularly impacted by climate-related biodiversity 
loss (Anderson et al. 2018a; Boulanger-Lapointe et al. 
2019; Kenny et al. 2018; Richmond and Ross 2009; 
Rose et al. 2001). Research has shown that replacing 
declining food species that are locally harvested with 
market foods in Northern Canada would negatively 
impact nutrient intake (Rosol et al. 2016). Furthermore, 
replacing Indigenous local foods can have negative 
impacts through “nutrition transitions” whereby diets 
transition from healthy Indigenous food systems to 
often unhealthy retail alternatives (Sharma 2010; 
Zavaleta et al. 2018). This can negatively affect 
cultural continuity, mental health outcomes, language, 
self-determination, and social cohesion, which are 
critical determinants of Indigenous Peoples’ health, thus 
raising important questions about the appropriateness 
and efficacy of market foods as an adaptation response 
(Marushka et al. 2019).

The health-related impacts of climate change on food 
systems and environments will vary between countries 
in the Americas, reflecting underlying societal, cultural, 
environmental, political, and economic factors and 
inequities. Similarly, food security levels differ within and 
between countries, between rural and urban locations, 
and across geographical features (e.g. altitude). 

impacts are also linked to vitamin B deficiencies, 
including neurological disorders and birth defects;  
and, in the absence of food products fortified with  
vitamins such as thiamine (B1), riboflavin (B2), and folic  
acid (B9), there may be an increased risk of vitamin B  
deficiency-related health impacts. In Venezuela,  
where a large proportion of the population faces 
socioeconomic challenges and undernutrition, folic  
acid deficiency was documented in over 30% of 
participants in a nationwide study (García-Casal et al. 
2005). Moreover, the impact of climate change on 
animal food sources may be experienced more acutely 
in regions where meat production and consumption 
are the greatest, including the potential for increased 
vitamin B12 deficiency. Several countries in the Americas, 
such as Argentina, the United States, and Brazil, are 
among the largest producers and consumers of meat 
globally (OECD 2021), and thus may be particularly 
vulnerable to the economic, health, and social impacts 
of climate change on the livestock sector. At the 
same time, global emissions associated with livestock 
production grew by 16% from 2000 to 2017, and 
approximately 990,000 deaths globally in 2017 were 
attributed to excessive red meat consumption (Watts 
et al. 2021). The connections between climate change 
and livestock production are, therefore, complex, 
and the implications of those interactions on dietary 
protein security require careful attention in food security 
and climate change response planning. Ultimately, 
the health impacts of reduced nutrients in foods will 
depend largely on overall dietary diversity as well as 
country-specific responses, including enrichment and 
fortification policies (CFIA 2014).

The impact of climate change on both pestiferous 
(e.g. insects, diseases) and beneficial (e.g. pollinators, 
biological control agents) organisms will also have 
important consequences for crop production and 
thus for nutritional security. Climate change could 
result in an increase in the number of generations 
per year and could modify the geographical range of 
species, with populations expanding into new areas 
as they become suitable and potentially declining in 
areas where they currently exist (Bebber et al. 2013; 
Crozier 2004; Ramirez-Cabral et al. 2017; Rosenzweig 
et al. 2001; Thomson et al. 2010). In the case of pest 
species moving into new areas, this could impact crop 
yields and lead to a potential increase in pesticide 
use. Additionally, climate change may also indirectly 
affect a given species through other species within the 
same food web. As one example, climate change can 
affect plant phenology, morphology, and physiology 
(Cornelissen 2011; Nicotra et al. 2010), which in turn 
could have positive or negative effects on populations 
of pestiferous and beneficial species at higher trophic 
levels. For instance, in response to herbivory, some 
plants release biogenic organic volatile compounds, 
which play a role in the upregulation of induced plant 
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retail methods (e.g. to direct sales), improving the 
transparency of food chains (including through 
labelling), external costs).

To be effective, these response options should consider 
the potential health benefits and/or unintended adverse 
health consequences of the strategy. Effective responses 
will work across sectors and include nutrition-sensitive 
adaptation and mitigation strategies, as well as 
considerations of climate-resilient, nutrition-sensitive, 
and sustainable agricultural development. Furthermore, 
response strategies should consider the role of social 
support, inclusion, and capacity development, as well as 
maternal and child care and health, and increased policy 
coherence that supports institutional and cross-sectoral 
collaboration (Mbow et al. 2019; Tirado et al. 2013). 
Finally, addressing social inequities must be a part 
of an effective adaptation and mitigation response. 
Importantly, responses that consider equity will vary 
depending on the socio-cultural and political context 
(Halvey et al. 2021; Horst et al. 2017). For example, 
Indigenous Peoples, farmworkers, and women with low 
incomes often face discrimination and inequity in access 
to resources, both of which contribute to higher rates of 
food insecurity and undernutrition in the Americas (Carr 
and Thompson 2014; Greene 2018). Thus, addressing 
discrimination and inequity, which affect their food 
security and nutrition, must be part of an inclusive and 
effective adaptation and mitigation response (Bacon 
et al. 2021). For example, rights-based approaches are 
one strategy for explicitly incorporating social inequity 
considerations into climate change adaptation and 
mitigation planning.

3.8 Mental health and wellbeing

3.8.1 How does climate change impact mental 
health?

There is strong evidence linking climate change and 
the resulting environmental shifts to a diverse range of 
complex and often-overlapping negative mental health 
outcomes in the Americas. Climate change will not only 
exacerbate pre-existing mental health conditions and 
challenges but it will also create new threats, stressors, 
and mental health outcomes (Benevolenza and DeRigne 
2019; Clayton et al. 2017; Cunsolo and Ellis 2018; 
Dodgen et al. 2016; Hayes et al. 2018; Kim et al. 
2019; Middleton et al. 2020b; Obradovich et al. 2018; 
Rataj et al. 2016; Rifkin et al. 2018; Vins et al. 2015). 
The published literature on the mental health impacts 
of climate change in the Americas is predominantly 
focused on Canada and the United States; there is 
growing, yet still limited, evidence from Mexico, and 
very limited research in the Caribbean or Central and 
South America.

There are four main causal pathways through which 
climate change affects mental health: acute, chronic, 

Inequities are also generally greater for single-parent 
households, lower-income households, and households 
with lower formal education levels (PHAC 2018). At 
both scales, climate change will exacerbate challenges 
for those regions and households with existing low 
levels of food security. Importantly, although individual 
and household characteristics are associated with 
food insecurity trends, each individual and household 
experiences a range of intersecting social, political, 
economic, and environmental factors that contribute to 
differential food security status over time (Kapilashrami 
and Hankivsky 2018). Therefore, individuals and 
households experience different and changing 
vulnerability to climate change impacts on food systems 
at multiple levels over time.

3.7.2 What adaptation and mitigation options are 
available to reduce undernutrition and food 
insecurity?

Both adaptation and mitigation approaches are  
critical in the context of food and nutritional  
security in a changing climate (Mbow et al. 2019) 
(see also Chapter 4). The IPCC identified food security 
response options that have significant adaptation and 
mitigation potential, including the following (Mbow 
et al. 2019):

• Improving crop management (e.g. increasing  
soil organic matter content, changing crop  
varieties, improving water management, 
biochar application, agroforestry, switching from 
monocultures to crop diversification, changing 
cropping areas, land rehabilitation (enclosures, 
afforestation), perennial farming, tillage and crop 
establishment, improving residue management, 
crop–livestock systems).

• Improving livestock management (e.g. 
implementing silvo-pastoral systems, introducing 
new livestock breeds, livestock fattening, shifting 
production to small ruminants or drought-resistant 
livestock or fish farming, establishing feed and 
fodder banks, seasonal feed supplementation, 
improving animal health through parasite 
management and thermal stress control).

• Improving food supply chains (e.g. developing 
food storage infrastructure, shortening supply 
chains, improving food transport and distribution, 
improving the efficiency and sustainability of the 
food processing, retail, and agrifood industries, 
improving energy efficiencies of agriculture, 
reducing food loss, promoting urban and peri-urban 
agriculture).

• Food demand management (e.g. promoting dietary 
changes (see Chapter 4 for details), reducing food 
waste, reducing packaging, changing selling and 
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• Anticipatory (i.e. anticipating future changes and 
what may result) and vicarious (i.e. witnessing the 
pain and suffering of others) experiences lead 
to emotional stress, sadness, stress, distress, fear, 
anxiety, and depression, even in the absence of 
direct acute or chronic exposure to climate hazards 
(Clayton 2020; Clayton et al. 2017; Middleton 
et al. 2020b). One study in Florida found that 
exposure to, and consumption of, media coverage 
of impending hurricanes led to increased negative 
mental health outcomes, including post-traumatic 
stress, depression, and anxiety, and that attempts 
to mitigate hurricane-based anxiety through more 
media consumption often led to higher levels of 
anxiety (Thompson et al. 2019).

• Disruption, degradation, or alteration of other 
determinants of health, including physical health, 
infrastructure, occupation, social connections, 
place-based attachments, knowledge systems, 
and cultural practices, can lead to negative mental 
health outcomes (Middleton et al. 2020b). For 
example, a systematic review of mental health 
disorders related to extreme weather events in 
Mexico, Nicaragua, Honduras, and Grenada found 
that displacement, the destruction of homes and 
infrastructure, and physical injury led to increased 
rates of depressive and anxiety disorders and 
post-traumatic stress disorder (Rataj et al. 2016).

The currently available evidence shows that 
climate-sensitive mental health outcomes in the 
Americas are unevenly and inequitably distributed. 
Those who live in ecologically sensitive areas, those who 
rely closely on the environment for livelihoods, food, 
and culture, those with chronic physical and mental 
health challenges, and those who are systematically 
marginalized and disadvantaged are the most affected 
(Clayton et al. 2017; Cunsolo et al. 2020b; Hayes 
et al. 2018; Middleton et al. 2020b). Groups at high 
risk for mental health outcomes related to climate 
change include Indigenous Peoples, particularly those 
living in remote locations and relying on the land for 
sustenance, livelihoods, and wellbeing (Middleton 
et al. 2020b), agricultural communities (Greene 2018; 
Yusa et al. 2015), those living in drought-, flood-, and/
or wildfire-prone areas (Dodd et al. 2018; Stanke et al. 
2013; Vins et al. 2015), children and young people 
(Clayton et al. 2017; Majeed and Lee 2017; Sanson 
et al. 2019; Sugg et al. 2019; Wu et al. 2020a), women, 
seniors, and economically disadvantaged peoples 
(Clayton et al. 2017; Xu et al. 2020c), and those living 
with chronic physical and mental health challenges 
(Clayton et al. 2017).

Although there has been little research developing 
future risk projections for mental health outcomes, one 
study indicated that suicide is projected to increase in 

anticipatory or vicarious, and through disruptions to 
other determinants of health.

• Acute and short-term weather events, such 
as severe storms, heatwaves, and corresponding 
events such as flooding and wildfires (Case Study 
10), are linked to a wide range of mental health 
outcomes in the Americas, including depression and 
anxiety (e.g. Clayton 2020; Cunsolo and Ellis 2018; 
Cunsolo et al. 2020b; Obradovich et al. 2018), 
unhealthy substance usage (Clayton et al. 2017; 
Cunsolo Willox et al. 2013a, 2013b; Morrison 
2011), family stress and violence (Clayton et al. 
2017; Cunsolo Willox et al. 2013a, 2013b; Younan 
et al. 2018), suicidal thoughts and suicide (Burke 
et al. 2018; Kim et al. 2019), post-traumatic stress 
disorder (Rataj et al. 2016; Schwartz et al. 2017), 
behavioral and mood disorders and increased rates 
of psychiatric hospitalization (Xu et al. 2020c), and 
strong emotional reactions (e.g. fear, stress, distress, 
grief, anxiety) (Cunsolo et al. 2020b; Middleton 
et al. 2020b). There is a growing body of research 
in the United States linking heatwaves to a range 
of negative mental health outcomes, including 
increased rates of violence and aggression, suicide, 
emergency room visits and hospitalizations, and 
self-reported poor mental health days (Burke et al. 
2018; Fernández-Arteaga et al. 2016; Fuhrmann 
et al. 2016; Guirguis et al. 2014; Kim et al. 2019; 
Obradovich et al. 2018; Sherbakov et al. 2018; 
Younan et al. 2018).

• Chronic exposures to subacute climate change 
events and related environmental alterations 
(e.g. drought, heatwaves, temperature fluctuations, 
sea level rise, sea ice loss, ecosystem changes) are 
linked to strong emotional responses, as well as 
to increased family stress and violence, disrupted 
sleep, and maladaptive coping behaviors including 
substance usage (Clayton et al. 2017; Coêlho et al. 
2004; Middleton et al. 2020b; Rifkin et al. 2018; 
Vins et al. 2015). For example, multi-year research 
from Nunatsiavut, Labrador, Canada, indicated that 
long-term chronic exposure to slow and creeping 
sea ice loss, changes in precipitation, and changes 
in wildlife populations were disrupting Inuit lives, 
livelihoods, and wellbeing. These changes led to 
diverse mental health outcomes, including feelings 
of sadness, fear, distress, depression, and grief, as 
well as increases in self-reported depression and 
anxiety, drug and alcohol usage, family stress, 
the magnification of already-present trauma 
and underlying mental health conditions, and 
losses of place attachment, sense of identity, and 
intergenerational knowledge sharing (Cunsolo 
Willox et al. 2012, 2013a, 2013b; Harper et al. 
2015; Middleton et al. 2020a, 2020b; Petrasek 
MacDonald et al. 2015).
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strategies. This could include activities that enhance 
social, physical, and mental health by promoting a 
connection to the natural world, such as increased 
time in nature and active, sustainable transportation 
choices (Clayton et al. 2017; Cunsolo et al. 2020b; 
Heinz et al. 2021; Reed et al. 2021; Verstraeten 
et al. 2020).

• Ensuring that the nuances of location-specific 
contexts are recognized by creating and 
implementing locally appropriate and culturally 
relevant mental health resources, programming, 
and policy. This can provide opportunities to 
further support and enhance positive mental health 
outcomes among those experiencing the direct and 
indirect effects of climate change (Cunsolo et al. 
2020b; Cunsolo and Ellis 2018).

• Understanding that mental health outcomes from 
climate change are unequally distributed and 
therefore require examination through a health 
equity lens, which should consider equity-based 
indicators including ethnicity, class, gender identity, 
access to mental health services, and geographical 
location (Cunsolo et al. 2020b).

Although research on climate-sensitive mental health 
outcomes continues to grow, there are important 
priorities and gaps. First, there is extremely limited 
published research examining climate-sensitive mental 
health outcomes in the Americas, particularly in the 
Caribbean and in Central and South America. More 
research is urgently needed, particularly among 
Indigenous Peoples and those groups that are most 
socially, economically, and politically marginalized. 
Second, there are limited population-level, longitudinal, 
and/or risk projection studies assessing and projecting 
exposures to climate hazards and the resultant mental 
health outcomes. Third, more research analyzing 
the nuances of the incidence rates and severity of 
short-, medium-, and long-term indirect and direct 
exposures to climate change hazards and the related 
mental health outcomes is needed to support mental 
health programming, resource development, and 
decision-making. Fourth, there is limited research on 
the short-, medium-, and long-term effects of climate 
change on the mental health of children and young 
people, and on their overall growth and development, 
scholastic achievement, and ability to handle long-term 
stress; however, emerging evidence indicates that 
children and young people are at risk for long-term 
impacts on mental health and cognitive function due 
to climate change (Clayton et al. 2017; Majeed and Lee 
2017; Sanson et al. 2019). Fifth, research has not yet 
evaluated mental health adaptation strategies to cope 
with and reduce the risks of climate change, including 
strategies and therapies already proven to treat other 
forms of mental illness. Finally, multi-country and 

the United States and Mexico by 2050 under RCP8.5 
(Burke et al. 2018). Another study, analyzing data from 
Canada, the United States, Mexico, and Brazil, found 
that higher ambient temperatures are associated with 
an increased risk of suicide (Kim et al. 2019). With 
current climate projections predicting increased ambient 
temperatures throughout the Americas, negative 
mental health outcomes such as suicidal thoughts, 
suicide attempts, and deaths by suicide linked to climate 
change and related environmental alterations will likely 
continue to increase in incidence, prevalence, and 
severity in the coming decades.

3.8.2 What adaptation and mitigation options are 
available to reduce mental health risks?

Climate change is an urgent threat to the mental health 
of individuals and communities in the Americas. As 
such, active, responsive, coordinated, and place-specific 
mental health adaptation policies are required to 
proactively protect, support, and improve individual and 
community mental health. Relevant and appropriate 
mental health adaptations might include the following:

• Applying a mental health lens to policies related to 
mitigation and adaptation of both the direct and 
indirect effects of climate change. This will help to 
ensure that the full health costs are considered in 
adaptation and mitigation planning, and that the 
potential for mental health impacts is reflected in 
decision-making.

• Developing and implementing climate-sensitive 
mental health, intangible loss, and damage metrics 
and indicators, as well as creating national and 
international public health surveillance systems to 
track those indicators (Middleton et al. 2020b).

• Developing, enhancing, and/or scaling up 
climate-sensitive mental health training and 
resources for health providers to support patient 
care and advocacy, which is essential to support 
mental health resilience in individuals and groups. 
This could include curriculum development in 
educational programs, toolkits, train-the-trainer 
approaches, web-based resources and communities, 
and ongoing professional development 
opportunities (Clayton et al. 2017; Cunsolo et al. 
2020b).

• Enhancing clinical assessments and supports for 
climate-sensitive mental health outcomes for 
patients, both at point-of-entry to the healthcare 
system and during ongoing healthcare connections 
(Cunsolo et al. 2020b).

• Learning from already-proven individual and group 
therapy approaches, and adding a climate-sensitive 
mental health lens to these supports and coping 
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Case Study 10 Climate migration and health in the Americas

Migration in the context of climate change is highly context-specific and often exemplifies climate injustice. The reasons for, and impacts 
of, migration depend on several factors related to specific climate impacts and the adaptive capacity of the affected population. Individuals, 
households, or larger communities may migrate as a direct result of a climate hazard (e.g. destruction of homes and/or assets by a flood or 
extreme weather event), or because of indirect impacts of climate change (e.g. crop failure and subsequent loss of income/livelihood due to 
drought conditions) (McLeman et al. 2021). Mobile populations may migrate when local responses are insufficient to reduce climate-related 
risk, although the outcomes of migration are uncertain and may be adaptive or maladaptive. Furthermore, the level of agency plays an 
important role in mobility outcomes, depending on whether the migration is voluntary or forced (e.g. because of a climate disaster); forced 
migration is also referred to as displacement (McLeman et al. 2021). In addition, some populations may be considered immobile due to a lack 
of resources needed to move or strong connections to place. Immobile populations and mobile populations with low agency often have lower 
adaptive capacity and poorer mobility outcomes than mobile populations with high agency (McLeman et al. 2021). 

Climate migrants are vulnerable to health impacts at all stages of the migration process, including the pre-departure stage, during transit (i.e. 
during short and/or long journeys), at the destination, and, in some cases, during the return journey (Abubakar et al. 2018). Circumstances 
surrounding migration are often very challenging and require individuals and/or families to make difficult decisions, which can have important 
implications for mental health, wellbeing, and social cohesion. Depending on the distance and mode of transport, some migrants also face 
unique health risks during transit, including reduced access to food and water, disruptions to healthcare access, and exposure to dangerous 
environments. Women and children in particular face an increased risk of violence and exploitation during transit (Abubakar et al. 2018). 
Moreover, discriminatory policies, racism, and/or social exclusion at the destination can limit access to healthcare, housing, education, and 
economic opportunities, which can both directly and indirectly impact the long-term health of migrants.

Climate hazard-induced migration is already occurring throughout the Americas, both internally and internationally, and is projected to worsen 
with climate change. The following are some examples:

• Wildfire evacuations in British Columbia, Canada, and the long-term relocation of residents from communities entirely destroyed during the 
2021 wildfire season.

• Voluntary migration away from coastal homes in Florida, United States to avoid the future impacts of sea level rise on housing.

• Displacement of all Barbuda residents during the 2017 Atlantic hurricane season, including evacuations to Antigua after Hurricane Irma.

• Relocation of residents in Newtok, Alaska, because of erosion and the increasing risk of flooding in the community.

• International migration due to crop failure and the loss of agricultural livelihoods and economic opportunities in Central America.

Frameworks and policies that focus on mitigation and adaptation, such as the Paris Agreement, will be important for preventing some level 
of climate migration by reducing climate hazards and the related displacement. However, despite mitigation efforts, migration is projected 
to increase substantially in the coming years. It is therefore critical for local, regional, and federal governments to improve and/or adopt new 
policies to accommodate and protect the health of those who are displaced by climate change. Currently, no nation has a system for migrants 
to seek asylum on the basis of climate displacement, demonstrating a need for governments to formally recognize and provide climate migrants 
with legal protections (McLeman 2019). Ratifying existing non-binding Compacts, such as the United Nations Global Compact for Safe, Orderly, 
and Regular Migration (United Nations General Assembly 2018), will improve international co-operation and ensure consistent legal protections 
and avenues of migration for those displaced by climate change. Adequately supporting, enforcing, and investing in policies and frameworks 
such as the SDGs (e.g. Goal 3: Good health and wellbeing) (United Nations 2020), “health in all policies” approaches (WHO 2014a), and 
universal health coverage (WHO and World Bank Group 2019) will also be important in building more resilient healthcare systems that respect 
human rights and reduce barriers to healthcare access for climate migrants.

multi-population comparative studies, complemented by 
localized case studies, are needed to understand local, 
national, and international mental health threats, as 
well as to identify related adaptation opportunities and 
to determine how mitigation efforts (e.g. transitioning 
to sustainable cities, changes to food and transportation 
systems) might impact mental health.

3.9 Respiratory health

3.9.1 How does climate change increase the risk of 
respiratory illnesses?

Particulate matter and ozone

The combustion of fossil fuels results in air pollutants 
and emissions of GHG, both of which contribute to 

the public health burden of air pollution (Kinney 2018; 
Orru et al. 2017) (see Section 3.3). Fine particulate 
matter includes non-CO2 inhalable pollutants, which 
are formed by combustion of fossil fuels and other 
chemical reactions. Ozone, another pollutant that can 
result from the combustion of fossil fuels, is produced 
by reactions between sunlight and other air pollutants, 
and at ground level is a contributor to smog and 
respiratory irritation (Fann et al. 2016). Climate change 
can increase these types of air pollution by accelerating 
the chemical reactions that lead to pollutant formation, 
including ozone formation, which has important 
health impacts (Kinney 2018). Climate change can also 
increase energy demands (e.g. through the use of air 
conditioning during heatwaves), further increasing GHG 
and air pollutant emissions (Abel et al. 2017, 2018). The 
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expose approximately 10 million people to smoke, with 
important health impacts and costs to public health 
systems (de Oliveira Alves et al. 2017; Ignotti et al. 
2010; Machin et al. 2019).

Important research gaps remain, with implications  
for decision-makers. Many studies in the United  
States have examined a wide range of health impacts 
related to air pollution exposure (Beelen et al. 2014; 
Landrigan et al. 2018) or changing temperatures 
(Abrahamson et al. 2009; Åström et al. 2013; Reid 
et al. 2012; Xu et al. 2014), but few have investigated 
combined and/or synergistic effects (Cheng et al.  
2008; Kinney 2018; Orru et al. 2017). There are even 
fewer studies that focus on projections for Central  
and South American countries (Smith et al. 2014).  
Regional effects must be a critical consideration in  
air pollution research, as the causes and effects may  
be location-specific (e.g. drought-related forest fires  
in Brazil and parts of Canada) (Case Study 11) (Dang  
and Unger 2015; Menezes et al. 2018; Sotto et al.  
2019). For example, in South America, air pollution  
downwind of wildfires is sometimes higher than  
air pollution observed in large urban centers, and  
has resulted in increasing hospital admissions for  
respiratory concerns, primarily among children and  
the elderly (Aragão et al. 2016; de Oliveira Alves et al.  
2017; Paralovo et al. 2019). Furthermore, although  
a growing body of literature examines ozone-related 
health impacts and projections under climate change, 
less certainty and understanding exists around climate 
impacts on particulate matter pollution. For example, 
household solid fuel combustion and the transport 
sector are major sources of black carbon, which is  
both a component of PM2.5 and a potent short-lived 
climate pollutant, highlighting a need for additional 
research to evaluate integrated actions to address 
multiple forms of pollution, including black carbon. 
Compounding these issues is a lack of reliable and 
extensive air quality monitoring and limited oversight 
of local climate actions in many Central and South 
American countries (Riojas-Rodríguez et al. 2016; Sotto 
et al. 2019). Evaluation of existing decarbonization 
efforts in the region will also be critical (AMS 2020; 
Coronel Carbo and Marzo Páez 2017; Crawford-Brown 
et al. 2012).

Aeroallergens

Climate change will impact the distribution, severity, 
and effects of aeroallergens, including fungal spores 
and plant pollen, which contribute to a large global 
burden of allergies. Aeroallergen production and 
release are sensitive to environmental conditions, 
including temperature, precipitation, humidity, wind, 
and atmospheric CO2 concentrations (Beggs 2004; 
Fann et al. 2016; Sierra-Heredia et al. 2018; Smith 
et al. 2014). Thus, climate warming may contribute to 
increased pollen production and a longer pollen season 

impacts of air pollutants are expected to be exacerbated 
by climate change given the climate-sensitive nature of 
their formation and exposure pathways. For example, 
higher temperatures may increase the formation and 
effects of pollutants such as ozone, and changing 
weather patterns may alter the distribution of fine 
particles by wind and may lead to increasing stagnation 
of ground-level ozone (Fann et al. 2016).

There is no doubt that air pollution associated 
with fossil fuel burning results in large numbers 
of premature deaths annually, although there is 
considerable uncertainty about the exact number of 
deaths globally (Lelieveld et al. 2019a; McDuffie et al. 
2021; Vohra et al. 2021). Coal combustion is a major 
cause of air pollution, accounting for a large number 
of the worldwide premature deaths attributable to 
particulate matter exposure in 2018 (Watts et al. 
2021). A multi-city study in Latin America found an 
increased risk of mortality as ambient concentrations 
of particulate matter and ozone increased (Romieu 
et al. 2012). Despite anticipated improvements in air 
quality standards and reduced fossil fuel use, overall 
ozone-related mortality is projected to increase in North 
America due to more favorable climatic conditions 
for ozone formation (Fann et al. 2016; Smith et al. 
2014; U.S. Energy Information Administration 2021). 
In the United States alone, some projections estimate 
thousands of climate change-attributable ozone-related 
deaths, respiratory illnesses, and hospital admissions 
annually by 2030 (Cheng et al. 2008; Fann et al. 2016; 
Kinney 2018; Orru et al. 2017). However, the health 
impacts resulting from particulate matter attributable 
to climate change are less certain than the health 
effects of increased ozone exposure (Cheng et al. 
2008; Fann et al. 2016; Kinney 2018; Orru et al. 
2017). Importantly, climate change, air pollution, and 
respiratory health outcomes may interact through 
several pathways that could exacerbate disparities for 
vulnerable populations, including children, the elderly, 
and those experiencing low socioeconomic conditions. 
With climate change, more people will seek cooling 
indoors. High-income populations may have access to 
air conditioning and filtration, whereas those in lower 
socioeconomic conditions may have to rely on opening 
windows, thus increasing their exposure to outdoor air 
pollution. Those with air conditioners but without air 
filtration may be exposed to higher concentrations of 
indoor air pollutants, since closing windows can cause 
the accumulation of such pollutants (Fann et al. 2016; 
Watts et al. 2021).

Climate change is also increasing the frequency, 
intensity, and distribution of wildfires, and wildfire 
smoke contains particulate matter that impacts 
respiratory health throughout the Americas (Case Study 
11). Wildfires occurring in the deforestation arc in the 
southern and western Brazilian Amazon episodically 
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3.9.2 What adaptation and mitigation options are 
available to reduce respiratory health risks?

Future trends in energy and carbon emissions are 
currently extremely contingent on economic trajectories 
after the recovery from the COVID-19 pandemic, and 
deliberate policy action to guide economic recovery 
may be needed to ensure that emission reductions 
continue (IEA 2020). Air pollution control both through 
mitigation efforts and through climate change policies 
will play an important role in the projected reduction 
of air pollution-related mortality and morbidity (Bell 
et al. 2006; Cifuentes et al. 2001; Crawford-Brown 
et al. 2012; Landrigan et al. 2018; Lelieveld et al. 
2019a). Several policy recommendations center around 
mitigation through investments in renewable energy, 
promoting active travel, and clean air that will benefit 
health through multiple pathways (AMS 2020; 
Crawford-Brown et al. 2012; Haines et al. 2007;  
Watts et al. 2019a). Direct and indirect co-benefits  
(i.e. double benefits and even triple benefits) should  
also be considered when evaluating the costs and  
benefits of such policies (Crawford-Brown et al. 2012; 
EEA 2020; Nemet et al. 2010; Portugal-Pereira et al. 

in some regions, as seen over several decades with 
ragweed pollen throughout North America, particularly 
at higher latitudes (Ziska et al. 2011). Projected increases 
in atmospheric CO2 concentrations are also expected 
to favor increased pollen production, although CO2 
impacts on fungal spores are less understood (Albertine 
et al. 2014; Beggs 2004; Cecchi et al. 2010).

The health impacts of aeroallergens include asthma, 
rhinitis, dermatitis, and conjunctivitis. Spores and pollen 
can also exacerbate pre-existing respiratory conditions 
such as chronic obstructive pulmonary disease, and 
allergenicity levels can increase with exposure to air 
pollutants (Fann et al. 2016; Sierra-Heredia et al. 
2018; Smith et al. 2014). Studies have demonstrated 
associations between increased pollen concentrations 
and more frequent allergy-related ambulance calls and 
hospital visits (Breton et al. 2006; Héguy et al. 2008; 
Sapkota et al. 2020). However, there is a paucity of 
research projecting future health impacts related to 
aeroallergen changes, particularly for Central and South 
America, emphasizing a need for additional research to 
understand these climate-sensitive health outcomes.

Case Study 11 Climate change, wildfires, and health in Canada and the United States

Climate change is contributing to warmer and drier environments in many regions throughout North America, creating more favorable 
conditions for larger and more severe fires and longer wildfire seasons. In Canada and the western United States, the number of large wildfires 
and land area burned has been increasing in recent decades (Gauthier et al. 2014; Hanes et al. 2019; USGCRP 2017, 2018), with research 
attributing increases in the area burned to climate change (Gillett et al. 2004).

The burning of organic materials produces large quantities of particulate matter and ozone precursors (Fann et al. 2016), so smoke from 
wildfires can impact the respiratory health of exposed individuals. Wildfire smoke can be transported long distances: for example, in 2016, 
smoke from the wildfires in Fort McMurray, Alberta, increased the particulate matter and ground-air ozone above acceptable quality standards 
in New York City, over 3,000 kilometers away (Wu et al. 2018). 

Climate change is projected to increase the intensity and duration of wildfires, resulting in increased exposure to fire-related particulate matter 
(Matz et al. 2020; Sun et al. 2019; Wotton et al. 2017). For example, it is estimated that smoke exposure will more than double by the mid-
century in the western United States (Liu et al. 2016a). Additionally, wildfire-related morbidity and mortality, as well as respiratory-related 
hospitalizations, are expected to increase (Liu et al. 2016b). Inhalation of smoke and air pollutants from wildfires has been linked to respiratory 
infections, healthcare visits and hospitalizations for respiratory problems, exacerbation of asthma and chronic obstructive pulmonary disease, 
and all-cause mortality (Reid et al. 2016). In Canada, several thousand premature deaths have been attributed to short- and long-term smoke 
exposure annually (Matz et al. 2020), and the number of annual premature deaths due to smoke from wildfires is projected to double by the 
late century in the United States compared with the early 21st century (Ford et al. 2018). Current and future projections highlight the need for 
mitigation and adaptation response strategies that consider and prepare for increased respiratory health impacts linked to wildfires and climate 
change.

Wildfires not only impact physical health; they can also negatively impact individual and community mental health and wellbeing (see Section 
3.8). Direct exposure to wildfires increases the risk for numerous mental health concerns, such as depression, anxiety, post-traumatic stress 
disorder, insomnia, suicidal ideation, and substance abuse (Belleville et al. 2019; Brown et al. 2019; Silveira et al. 2021; Xu et al. 2020a). 
Wildfire-induced psychological trauma and emotional distress may persist long after the initial threat subsides. For example, a study in Fort 
McMurray, Alberta, found evidence of probable post-traumatic stress disorder, depression, anxiety, and alcohol or substance use disorder 
among grade 7–12 students 18 months after a devastating wildfire caused the forced evacuation of the city’s 88,000 residents (Brown et al. 
2019). These stress-related disorders can be exacerbated by pre-existing mental health and wellbeing concerns, which was observed following 
exposure to the Camp Fire of 2018, the deadliest wildfire in California’s history (Silveira et al. 2021). Wildfires can also indirectly impact mental 
health by undermining the social and environmental determinants of health. For example, the 2014 wildfire season in the Northwest Territories, 
Canada, caused prolonged periods of smoke and reduced air quality, disrupting residents’ ability to safely participate in outdoor and culturally 
significant land-based activities, which subsequently impacted their livelihoods and mental wellbeing (Dodd et al. 2018). Qualitative interviews 
with workers participating in recovery efforts for the 2017–2018 California wildfires further highlighted the interconnected nature of wildfire-
induced social issues, such as displacement-related housing and employment concerns, with mental and emotional health (Rosenthal et al. 
2021). Lastly, similar to other extreme weather events, current and anticipated risks of wildfire-related losses of property, beloved places, 
livelihoods, and loved ones may evoke strong emotional reactions, such as ecological anxiety and grief.
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can increase temperatures by removing cooling sulfate 
aerosols from the atmosphere (Lelieveld et al. 2019a). 
This highlights both the importance of reducing air 
pollution through climate change mitigation actions and 
the necessity of considering climate impacts in planning 
air pollution control. With carefully designed goals and 
priorities, both air pollution control and climate change 
policies can play an important role in reducing projected 
air pollution-related mortality and morbidity due to 
climate change (Bell et al. 2006; Cifuentes et al. 2001; 
Crawford-Brown et al. 2012; Dang and Unger 2015; 
Landrigan et al. 2018).

2018). Region-specific air pollution epidemiology  
and monitoring programs should be implemented 
to evaluate the health and environmental impacts of 
mitigation policies. The development and expansion  
of adaptation strategies, such as local air quality  
indices and improved indoor air quality management, 
will also be important given anticipated increases in air 
pollutants.

Climate change policies and air pollution management 
strategies may not always align (Crawford-Brown et al. 
2012). For example, air pollution control measures 

Case Study 12 Climate change and Indigenous Peoples’ health in the Americas

Although everyone in the Americas is affected by climate change impacts on health, Indigenous Peoples are often the most affected (IPCC 
2019b, 2019a; Status of Tribes and Climate Change Working Group 2021). Many Indigenous Peoples have strong cultural, spiritual, and 
emotional ties to the land and waters of their territories; therefore, climate change impacts on the environment can have important health 
implications. Indigenous Peoples often face socioeconomic, infrastructural, political, and health inequities, which are rooted in historical and 
ongoing colonial legacies, and which can further increase climate change risks (Anderson et al. 2016; Greenwood and Lindsay 2019; Whyte 
2016, 2019). Despite these challenges, Indigenous Peoples are actively adapting and responding to climate change in many ways, including 
through actions, advocacy, and political engagement that range from local to international in scale (Etchart 2017; Ford et al. 2020; IPCC 2018, 
2019a, 2019b). As Indigenous scholar Margot Greenwood and colleagues wrote: 

“Colonialism violently disrupted relational ways, criminalizing cultural practices, restricting freedom of movement, forcing relocation, removing 
children from families, dismantling relational worldviews, and marginalizing Indigenous lives. However, Indigenous peoples have never been 
passive in the face of colonialism. Now more than ever, Indigenous knowledge in three critical areas—food and water security, climate change, 
and health—is needed for self-determination and collective survival in a rapidly changing world.” (Greenwood and Lindsay 2019).

It is important to note that although Indigenous Peoples across the Americas share many climate change exposures, vulnerabilities, and risks, 
they are also extremely diverse in terms of Peoples, cultures, languages, colonial experiences, and knowledges. Herein, we provide examples 
of climate change impacts on Indigenous health in the Americas, and we outline examples of ongoing climate change adaptation led by 
Indigenous Peoples (Table CS 12.1).

Changing access to availability of nourishing, accessible, and preferred food and water
Many Indigenous Peoples throughout the Americas depend on local agriculture, gathering, hunting, fishing, and water sources. These  
activities and sources provide not only food, nutrition, and water security, but are also essential for cultural continuity and for emotional,  
mental, and spiritual health; this reflects the deep connection that many Indigenous Peoples have with the land and waters (e.g. Hofmeijer  
et al. 2013; Middleton et al. 2020b; Parraguez-Vergara et al. 2018; Torres-Slimming et al. 2020; Wilson et al. 2019). Consequently, rising 
temperatures, altered precipitation patterns, and increasing incidents of extreme weather events due to climate change negatively impact 
Indigenous Peoples’ access to, and quality of, nourishing and preferred resources (Cozzetto et al. 2021; Donatuto et al. 2014; FAO et al. 2021; 
Jacob et al. 2010; Reid et al. 2014; Schlinger et al. 2021; Torres-Slimming et al. 2020; Whyte et al. 2021a; Zavaleta et al. 2018). These climate-
related changes not only exacerbate the existing food and water insecurity experienced by many Indigenous Peoples (Anderson et al. 2016; FAO 
et al. 2021), but have also been linked to increased incidences of negative health outcomes such as malnutrition, cardiovascular disease, acute 
gastrointestinal illness, vector-borne illness, mental health concerns, and a lack of cultural health resources (Middleton et al. 2020b; Mitchell 
2018; Reid et al. 2014).

Climate change is affecting Indigenous Peoples’ planting, harvesting, fishing, and hunting practices in many ways. For example, decreased 
rainfall has resulted in soil salinization, desertification, and decreased agricultural productivity, thus compromising food security and nutritional 
outcomes for the Mapuche Peoples in the Chilean Andes (Parraguez-Vergara et al. 2016). Climate change is also impacting the abundance, 
distribution, and health of wildlife species hunted by Indigenous Peoples (Cunsolo et al. 2020a; Kronik and Verner 2010; Zavaleta et al. 2018). 
For example, in the Arctic, climate change is an important contributor to the declining caribou population, which has led to a ban on caribou 
hunting in Labrador, Canada. However, as caribou are an important food source and cultural keystone species for Inuit in the region, this ban 
has significant negative food security and wellness implications for the affected communities (Borish et al. 2021; Cunsolo et al. 2020a; Kenny 
et al. 2018). Furthermore, increased winds, melting and thawing of the cryosphere, and changing ocean currents are expected to enhance the 
transport and uptake of organic pollutants and toxic heavy metals in Arctic ecosystems. This will not only compromise the quality and safety 
of Inuit food systems, but will also increase the risk of neurodevelopmental disorders and cardiovascular disease (Alava et al. 2017, 2018; 
Donaldson et al. 2010). Additionally, rising temperatures are expected to increase the incidence of foodborne diseases. For example, increasing 
temperatures in Alaska, United States, are negatively affecting the preparation of traditional fermented foods, increasing the risk of botulism 
among Indigenous Peoples (Fagan et al. 2011; Parkinson and Butler 2005).
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The quantity, quality, and accessibility of freshwater resources upon which Indigenous Peoples rely are also being threatened by climate change 
(Berner et al. 2016; Cozzetto et al. 2013, 2021; Doyle et al. 2013; Goldhar et al. 2014; Harper et al. 2011, 2015, 2020; Patrick 2018; Schlinger 
et al. 2021; Torres-Slimming et al. 2020). Changes in water resources affect not only water security but also Indigenous Peoples’ mental, 
emotional, and spiritual wellbeing, as many communities maintain intimate spiritual and cultural connections with bodies of water (Cozzetto 
et al. 2013; Cunsolo Willox et al. 2012; Harper et al. 2015; Mitchell 2018; Torres-Slimming et al. 2020; Wilson et al. 2019). For example, in the 
United States, droughts are becoming more common and are forcing members of the Navajo Nation to travel over 14 miles to obtain water 
for household use (Cozzetto et al. 2013). Similarly, as glaciers continue to retreat in the high Andes, water scarcity is increasing for Indigenous 
communities that depend on snowmelt for water (Kronik and Verner 2010). Lastly, in addition to decreased water quantity, changing 
temperature and precipitation regimes across the Americas are increasing the risk of waterborne diseases, leading to increased cases of acute 
gastrointestinal disease, cholera, and leptospirosis (Doyle et al. 2013; Harper et al. 2011, 2020; Hofmeijer et al. 2013; Kronik and Verner 2010; 
Parkinson and Butler 2005; Wang et al. 2018). These challenges can exacerbate existing water access, scarcity, and safety concerns, as well as 
inequitable access to adequate water treatment infrastructure (Cozzetto et al. 2021; Harper et al. 2020; Wilson et al. 2019).

Increasing risks of chronic and infectious illnesses due to climate change
Climate change is also projected to exacerbate the already high burden of chronic illnesses and infectious diseases that affect many Indigenous 
Peoples (Anderson et al. 2016; Gracey and King 2009). For example, in the Arctic, higher temperatures are contributing to increased air 
pollution and production of pollens, worsening allergy and asthma symptoms (Albert et al. 2018; Driscoll et al. 2016; Harper et al. 2015). 
Similarly, as heatwaves increase in frequency, heat-related stresses are also increasing: reports of respiratory distress on hot summer days have 
already been reported by Indigenous Elders (Bolton et al. 2011; Driscoll et al. 2016). In addition, such health impacts will likely be further 
compounded for those Indigenous Peoples who have limited access to quality healthcare services (Brierley et al. 2014; Bussalleu et al. 2021).

The risks of vector-borne and zoonotic diseases are also expected to increase as a result of climate change (Ellwanger et al. 2020; Ford et al. 
2010; Parkinson and Butler 2005; Parkinson et al. 2008). For example, higher temperatures in the Arctic and Andes regions are expected 
to increase the range of insect vectors and alter the types and incidence of vector-borne and zoonotic diseases, such tick-born encephalitis, 
malaria, and dengue (Albert et al. 2018; Kronik and Verner 2010; Parkinson et al. 2008). In the Amazon, decreased precipitation levels have led 
to more stagnant water reservoirs, thus increasing the prevalence of vector-borne diseases such as leishmaniasis (Hofmeijer et al. 2013). In the 
Arctic, there is also concern about emerging pathogens from thawing permafrost (EASAC 2019). 

Increasing injuries and mortality as a result of changing climate conditions
Extreme and rapidly changing weather conditions, including heatwaves, storms, droughts, flooding, and changing water, ice, and sea ice 
conditions, continue to pose challenges for many Indigenous Peoples, particularly those who engage in activities on the land (IPCC 2019a, 
2019b; Wilson et al. 2021). In the Arctic, decreasing sea ice thickness and increasingly unpredictable weather have contributed to more 
unintentional injuries, such as hypothermia and frostbite, while out on the land in both the United States and Canada (Clark and Ford 2017; 
Driscoll et al. 2016; Fleischer et al. 2014). In Montana, Crow Tribal Elders have expressed concerns that outdoor ceremonial practices such 
as sundances are being threatened by high temperatures, which increase the risk of heat stroke, particularly among fasting participants 
(Doyle et al. 2013). In the Amazon, Indigenous Peoples report the need to be more cautious in rivers following heavy rainfalls because of 
strong currents bringing unseen debris that could cause them harm (Torres-Slimming et al. 2020). Furthermore, in Peru, high floods are often 
accompanied by the arrival of dangerous animals such as boas, vipers, and eels into communities (Langill 2018).

Changing and uncertain environmental conditions impact mental health and wellbeing
Climate change has direct effects on Indigenous Peoples’ mental health and wellbeing (Cunsolo and Ellis 2018; Middleton et al. 2020b). For 
example, Awajún communities in northern Peru have reported that growing water insecurity is contributing to increased stress and depressive 
symptoms (Tallman 2019). In the Arctic, higher temperatures were associated with mental health-related clinic visits for Nunatsiavut Inuit 
(Middleton et al. 2021). Moreover, for many Indigenous Peoples, the ability to safely engage in land-based activities is essential to their mental 
wellbeing (Cunsolo Willox et al. 2013b; Middleton et al. 2020a) and physical health (Akbar et al. 2020); as such, disruption of water-, ice- and 
land-based activities due to climate change, combined with other factors such as the loss of cultural sites caused by erosion or flooding, are 
contributing to psychosocial stresses (Cunsolo Willox et al. 2013a; Donatuto et al. 2014; Middleton et al. 2020a). For example, in Indigenous 
communities the Arctic, the reduced ability to safely engage in land-based activities and access important cultural sites has led to increased 
anxiety, fear, distress, anger, and grief (Cunsolo Willox et al. 2013a, 2015; Petrasek MacDonald et al. 2015). Lastly, in some cases climate 
change may alter landscapes to such a degree that Indigenous Peoples are forced to relocate, which is associated with stress, grief, and 
depression due to the loss of meaningful places, social networks, and cultural links (Albert et al. 2018; Kronik and Verner 2010; Maldonado 
et al. 2021; Middleton et al. 2020b; Parry et al. 2019). 

Declining access to quality healthcare due to climate change
Across the Americas, Indigenous Peoples’ access to allopathic healthcare is often limited and can require extensive travel, especially if their 
home community is remote (Anderson et al. 2016; Brierley et al. 2014; Parry et al. 2019). Consequently, Indigenous Peoples’ access to 
healthcare can be vulnerable to climate change and is often disrupted by extreme weather conditions. For example, in some Peruvian villages, 
community members reported that they typically lack access to the nearby health post for several weeks if flood waters rise to a certain level 
(Langill 2018). In Arctic Canada, many Indigenous Peoples rely primarily on air transportation and telecommunication in emergency medical 
situations, both of which are vulnerable to extreme weather events (Ford et al. 2010; Harper et al. 2015). Furthermore, changing seasonality, 
flooding, and drought, combined with deforestation and other anthropogenic changes, have also decreased the accessibility of plants and other 
medicines harvested from the local environment for many Indigenous Peoples (Hofmeijer et al. 2013; Lynn et al. 2013). For example, many 
Indigenous Peoples rely on medicinal plants (e.g. Vandebroek et al. 2004) and foods (FAO et al. 2021), which are considered key for fostering 
climate change adaptation.
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Adaptation and responses to the impacts of climate change on health
Despite these challenges, Indigenous Peoples across the Americas have been leading health-related adaptation strategies, which are often 
grounded in strong social networks, extensive Indigenous knowledge systems, and deep connections to place (Table CS 12.1). To reduce 
the health effects of climate change for Indigenous Peoples, decision-makers must apply a rights-based approach and support Indigenous 
self-determination in identifying, developing, and implementing adaptation and mitigation strategies that reflect their specific socio-cultural, 
economic, environmental, and geographical contexts. This requires acknowledging, upholding, and reaffirming Indigenous Rights (e.g. the 
United Nations Declaration on the Rights of Indigenous Peoples) and providing resources to address both non-climatic and climatic factors that 
increase climate–health risks, as well as recognizing the critical role that Indigenous knowledges play in climate–health solutions (Cameron 
et al. 2021; Gahman and Thongs 2020; ITK 2019; Jones 2019; McGregor 2021; Ratima et al. 2019). Ultimately, addressing climate–health risks 
for Indigenous Peoples requires not only examining and dismantling the broader context of colonialism, racism, and dispossession but also 
supporting Indigenous self-determination (Cameron et al. 2021; Gahman and Thongs 2020; ITK 2019; Jones 2019; McGregor 2021; Ratima 
et al. 2019).

Table CS 12.1 Examples of health risks experienced by Indigenous Peoples in the Americas due to climate change, and associated 
Indigenous-led adaptation measures

Impacts of climate hazards on health Adaptation measures

Food and water insecurity

• Gitga’at Nation in British Columbia, Canada, expect that the 
salmon and clams upon which they rely will be negatively 
impacted by warmer and more acidic waters (Reid et al. 2014).

• Gitga’at Nation maps and surveys historic and new harvesting 
sites to adapt to changes in food access. They also organize 
communal harvesting efforts (Reid et al. 2014).

Chronic and infectious diseases

• Shawi and Shipibo communities in Peru report concern over 
increasing vector-borne diseases and parasitic infections 
(Hofmeijer et al. 2013).

• Shawi and Shipibo Peoples use nets, boil their water, and build 
raised homes that offer protection from animals carrying diseases 
(Hofmeijer et al. 2013).

• Climate change is projected to cause changes in the incidence 
and geographical distribution of infectious diseases in the Arctic 
(Parkinson et al. 2008).

• The International Circumpolar Surveillance system was established 
to monitor infectious diseases in the Arctic to help formulate 
prevention and control strategies (Parkinson et al. 2008).

Injury and mortality

• Inuit in Northwest Territories, Canada, report that early and 
rapid spring melt, less predictable weather, and changing sea 
ice dynamics are causing more hunters to become stranded or 
injured (Fawcett et al. 2018).

• Inuit take extra supplies and gas out on the land, travel  
in groups, stay closer to town, and use communication and/or 
navigation technology (Fawcett et al. 2018).

• Shawi communities in Peru report that heavy rainfall creates 
dangerously strong water currents which carry debris that could 
injure bathers (Torres-Slimming et al. 2020).

• Shawi exercise greater caution when bathing, and  
actively reforest the riverbank to minimize erosion  
(Torres-Slimming et al. 2020).

Mental health and wellbeing

• In Nunatsiavut, Canada, less predictable weather and decreasing 
sea ice render it more challenging to safely engage in traditional 
activities, which are central to Inuit mental wellbeing (Hirsch et al. 
2016).

• ‘Going Off, Growing Strong’ is a community-led youth outreach 
program that aims to enhance the mental, physical, and spiritual 
health of youth by participating in land-based activities with 
harvesters and Elders (Hirsch et al. 2016).

Access to quality healthcare

• First Nations in the Yukon, Canada, report that changing 
temperatures, precipitation, and seasonality impact the harvesting 
and practice of traditional medicine (Climate Telling 2021).

• The First Nations community developed an action plan to sustain 
traditional medicine practices through climate changes, which 
includes documenting traditional medicine knowledge and 
identifying gathering areas sensitive to climatic changes (Climate 
Telling 2021).



44  | March 2022 | Climate change and health in the Americas IANAS 

4 What are the overarching adaptation and mitigation response 
options?

Given the range, magnitude, and pace of current 
climate change impacts, together with heightened 
future risks, both climate change adaptation and 
mitigation strategies are critical to protect public health. 
Whereas in Chapter 3 we examined some adaptation 
options specific to each health outcome category, 
here we synthesize the overarching mitigation and 
adaptation options, with a focus on those strategies 
that cut across sectors, health outcomes, and 
geographies. Case studies are incorporated throughout 
the chapter to provide local and/or regional context 
and to highlight in-depth examples of climate–health 
impacts and response strategies across the Americas.

4.1 Adaptation strategies, policies, and programs

Climate change is already affecting population health 
and healthcare infrastructure, requiring adaptation 
policies and measures to increase the resilience 
of individuals, communities, and health systems. 
Adaptation is “the process of adjustment to actual or 
expected climate and its effects. In human systems, 
adaptation seeks to moderate harm or exploit beneficial 
opportunities” (IPCC 2014a).

The risks of a changing climate arise from the 
intersection of the hazards directly and indirectly 
created by climate change, the populations and 

regions exposed to these hazards, their vulnerability to 
exposure, and the capacities of communities, health 
systems, and healthcare infrastructure to understand 
and prepare for changes in the magnitude and pattern 
of climate-sensitive health outcomes. Vulnerabilities to 
climate change are shaped by complex spatial, social, 
political, and economic factors. Therefore, iterative risk 
management is needed to manage the health risks of 
climate change, through which effective adaptation 
policies address the underlying inequalities and injustices 
that create differential vulnerabilities (Eriksen et al. 
2011).

Adaptation strategies, policies, and programs aim to 
build climate-resilient and environmentally sustainable 
health and healthcare systems (WHO 2020b). Figure 
4.1 illustrates how shocks and stresses associated with 
climate change can affect the capacity and resilience 
of health systems and healthcare facilities, and how 
adaptation and disaster risk management can affect 
preparedness, response, and recovery (WHO 2020b). 
Improving climate–health education will also be critical 
in developing and implementing effective adaptation 
strategies (Case Study 13).

To build resilience, adaptation approaches need to 
address the building blocks of health and healthcare 

Figure 4.1 Recovery scenarios for healthcare systems after climate shocks, which are influenced by prevention, preparedness, 
response, and recovery actions, as well as by learning cycles and adaptation measures (adapted from WHO 2020b).
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Countries in the Americas with national V&A 
assessments include Antigua and Barbuda, Barbados, 
Bolivia, Brazil, Canada, Costa Rica, Dominica, Grenada, 
Mexico, Panama, St. Lucia, and the United States (Berry 
et al. 2018). Specific guidelines have been developed 
for regions in Canada (e.g. Ontario) (Berry et al. 2018) 
and the United States (e.g. CDC Building Resilience 
for Climate Effects (BRACE; https://www.cdc.gov/
climateandhealth/BRACE.htm)), and guidelines are also 
being prepared for SIDS in the Caribbean (Scheske 
et al. 2018). Subnational assessments are useful in large 
countries where the health impacts of climate change 
are diverse and can vary significantly between regions 
(Berry et al. 2018).

A V&A assessment is a core element supporting the 
development of the health component of a national 
adaptation plan (HNAP) (WHO 2014c). An HNAP builds 
on existing national efforts towards health adaptation 
to climate change, including existing assessments, 
policies, and programs, to ensure that health adaptation 
is integrated into national health planning strategies, 
processes, and monitoring systems. HNAPs also 
maximize synergies across sectors, such as food, water, 
energy, and housing, by building health considerations 
into their adaptation planning, which is critical in 
addressing the upstream drivers of health.

Examples of health adaptation options

Prioritizing adaptation options in any location requires 
an understanding of the magnitude and pattern 

systems: (i) leadership and governance; (ii) the health 
workforce; (iii) health information systems, including 
vulnerability, capacity, and adaptation assessments, 
integrated risk monitoring, and early warning and 
response systems; (iv) service delivery, including 
climate-informed health policies and programs and 
management of the environmental determinants 
of health; (v) the availability and accessibility of 
complementary social services; (vi) climate-resilient and 
sustainable technologies and infrastructure; and (vii) 
financing and investment (WHO 2020b).

4.1.1 Policy options for managing the health risks 
of climate change

Vulnerability, capacity, and adaptation (V&A) 
assessments are critical for establishing a knowledge 
base of current and projected health risks, identifying 
particularly vulnerable populations and regions, and 
detailing the capacity of systems and communities to 
prepare for and manage changes in the magnitude 
and pattern of risks. These assessments often build 
partnerships within the health sector to ensure that 
climate change is integrated into current policies and 
programs, as well as partnerships across non-health 
sectors that facilitate collaborations on adaptation 
tools such as early warning systems. These assessments 
typically identify and prioritize a range of adaptation 
strategies, policies, and programs over short to longer 
terms (Berry et al. 2018). Many countries follow the 
World Health Organization guidelines for conducting 
such assessments (WHO 2013, 2021) (Figure 4.2). 

PLANNING the assessment

CONDUCTING the assessment

SYNTHESIZING the assessment

6

5432

1

ADAPTATION
ASSESSMENT

FUTURE RISK
ASSESSMENT

CAPACITY 
ASSESSMENT

VULNERABILITY 
ASSESSMENT

Establish an 
assessment team 
with expertise in 

the Americas 
context

Develop a plan 
for engaging 
stakeholders 

and knowledge 
users 

Determine which 
data and expert 
knowledge will 

inform the 
assessment

Define the 
health outcomes 

and time 
period of the 
assessment

Outline the 
key questions 

and policy 
context(s)

Develop a 
communication 

strategy to share the 
assessment in the 

Americas and beyond

Assess the capacities of 
healthcare and other 

relevant systems to adapt 
to climate change

Identify programming, 
policies, and other actions 

to address current and 
projected health impacts of 

climate change

Project future impacts of 
climate change (quantitative 

and/or qualitative)

An iterative process continually monitors and 
addresses climate-related heath outcomes in the

 Americas

Assessment is synthesized for use as an input in health 
adaptation plans and other climate-health related policies, 

planning, and programming

Describe the current burden 
of climate-sensitive health 
outcomes and vulnerability 

to climate change in the 
Americas

Figure 4.2 Steps for conducting a climate change and health vulnerability and adaptation (V&A) assessment (adapted from WHO 
2021).

https://www.cdc.gov/climateandhealth/BRACE.htm
https://www.cdc.gov/climateandhealth/BRACE.htm
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4. Spending on adaptation for health and 
health-related activities

Two of the indicators on adaptation and planning are 
drawn from the World Health Organization Health and 
Climate Change Survey. This is a voluntary national 
survey completed by Ministry of Health focal points. 
In 2021, 47 (52%) of 91 countries participating in the 
survey reported having national health and climate 
change strategies or plans in place (Romanello et al. 
2021). The main findings of the survey are relevant for 
all regions: (i) national planning on health and climate 
change is advancing, but the comprehensiveness 
of strategies and plans needs to be strengthened; 
(ii) implementing action on key health and climate 
change priorities remains challenging; (iii) results from 
vulnerability and adaptation assessments are influencing 
policy prioritization; and (iv) multisectoral collaboration 
on health and climate change policy is evident, with 
uneven progress (Watts et al. 2021).

The third indicator on adaptation and planning is 
derived from the Carbon Disclosure Project reporting 
platform (https://www.cdp.net/en/climate), which 
was established to assist investors, companies, cities, 
states, and regions with the management of their 
environmental impacts. As of July 2021, 36 of 859 
subnational adaptation measures reported to the 
Carbon Disclosure Project in the United States (4%), 
13 of 250 measures in Canada (5%), and 3 of 131 
in Mexico (7%) focused on public health and safety 
(https://data.cdp.net/d/feaz-9v5k/visualization). 
These findings are consistent with data showing very 
limited climate financing for health-related climate 
change adaptation, and equally limited research 
funding in biomedical sciences for climate change and 

of current and projected risks, the vulnerabilities of 
populations and infrastructure to these risks, the 
effectiveness of policies and programs to manage these 
risks, and the strengths and challenges that are unique 
to communities and health systems. Table 4.1 illustrates 
the range of adaptation options that can be effective 
in managing climate-sensitive health outcomes (Smith 
et al. 2014).

4.1.2 Indicators for assessing health adaptation

Monitoring and evaluating climate change adaptation 
progress will be increasingly critical. What constitutes 
successful adaptation will vary over time with shifts in 
vulnerability and climate-related exposures, and those 
adaptation strategies implemented today may not show 
effectiveness for several years. Consequently, the Lancet 
Countdown established an international collaboration 
to provide an independent, global monitoring system 
dedicated to tracking four groups of indicators of 
adaptation, planning, and resilience for a health profile 
of a changing climate (Watts et al. 2017):

1. Adaptation planning and assessment
a. National adaptation plans for health
b. National assessments of climate change 

impacts, vulnerabilities, and adaptations for 
health

c. City-level climate change risk assessments

2. Climate information services for health

3. Adaptation delivery and implementation
a. Detection, preparedness, and response to 

health emergencies
b. Air conditioning
c. Urban green space

Table 4.1 Examples demonstrating the range of adaptation options that are available to manage climate-sensitive 
health outcomes (Smith et al. 2014)

Climate-sensitive health 
risk

Example adaptation options

Heat-related morbidity and 
mortality

Education to increase awareness of the hazards of high ambient temperature; heat action 
plans, including heatwave early warning and response plans and longer-term planning; built 
environment modifications to address higher temperatures and more frequent heatwaves with 
progressing climate change

Injuries, illnesses, and deaths 
from extreme weather and 
climate events

Explicitly incorporating health into disaster risk management plans; stress testing of disaster 
response plans to ensure effectiveness in a warmer future; early warning and response systems; 
incorporating mental health impacts into disaster risk management

Illnesses and deaths associated 
with poor air quality

Early warning and response systems; education to increase awareness of the hazards of ozone, 
aeroallergens, and wildfire smoke 

Infectious diseases Integrated vector management; integrated disease surveillance; early warning and response 
systems; improved water, sanitation, and hygiene systems

Undernutrition Integrated surveillance and monitoring systems; early warning and response systems; improved 
water, sanitation, and hygiene systems

https://www.cdp.net/en/climate
https://data.cdp.net/d/feaz-9v5k/visualization
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that effectively reflect the intended metric, but the 
development and measurement of appropriate 
indicators may be improved as additional data are 
collected over time. Furthermore, it is important that 
governments provide the resources and supports 
needed to identify, implement, and sustain the 
continued monitoring of these metrics and responses.

4.1.3 Coordinating health adaptation across scales 
and sectors

Adapting to the health impacts of climate change will 
require coordinated efforts between the health sector 
and other sectors such as water and sanitation, food 
production, transportation, housing, education, and 
land-use planning. The design of coherent adaptation 
policies based on cross-sectoral collaboration to 
maximize synergies between different policy goals and 
minimize trade-offs or conflicts is generally considered 
an essential condition to achieving successful risk and 
vulnerability reduction (Austin et al. 2016). National 
and regional adaptation plans can be supported by 
cross-sectoral and multi-scalar working groups that 
bring a health lens to adaptation planning in related 
sectors and at different levels of government.

4.1.4 Limits to adaptation

The changing nature of climate risks means that 
currently effective adaptations may become inadequate 
over the medium to longer term. An important concern 
is that adaptations designed without sufficient attention 
to equity and the needs of the most vulnerable may 
actually increase risks or shift risks to certain groups 
(Juhola et al. 2016). A key research question is to 
determine whether there are situations in which health 
systems will no longer be able to avoid intolerable risks 
even with adaptation strategies in place. These limits 
to adaptation may result from climate change and/or 
physiological, institutional, technological, behavioral, 
or economic factors. For example, hospitals and other 
health facilities built on permafrost or on floodplains 
face limits to adaptation as the hazards associated with 
these locations increase with climate change. More 
than 5% of Canadian health facilities are located on 
floodplains (Clark et al. 2021); consequently, these 
facilities have a reduced capacity to respond and provide 
health services to those injured or otherwise impacted 
during a flooding event.

The limits to adaptation will depend on both the rate 
and magnitude of temperature increases. If global 
temperatures only reach 2°C above pre-industrial 
temperatures by 2100, then health systems and 
critical infrastructures have time to prepare for the 
consequences; however, global increases greater 
than 2°C will pose much more significant adaptation 
challenges. Research is needed to better understand 
the range of plausible future climate and adaptation 

health (UNEP 2018). The evidence base for effective 
adaptation strategies to protect public health in low 
and middle income countries is particularly inadequate. 
A recent systematic review identified 99 studies (1,117 
reported outcomes) from 66 low and middle income 
countries, and only two studies were ex ante formal 
evaluations of climate change adaptation responses 
(Scheelbeek et al. 2021). This gap in the evidence base 
reflects a broader knowledge gap in the adaptation 
literature. A global review of research on implemented 
climate–health adaptations found that few studies 
have assessed the effectiveness of adaptation actions 
(Berrang-Ford et al. 2019, 2021a). Although adaptation 
assessments often rely on indicators of adaptation 
policy processes, evaluating the effectiveness of these 
processes also requires policy attribution frameworks 
for assessing risk and vulnerability reduction outcomes. 
Our understanding of whether or how adaptations are 
reducing key climate change risks and vulnerabilities 
would benefit from further development, and highlights 
the need for more robust monitoring and evaluation of 
adaptation policies, programs, and projects.

Adaptation options need to be co-designed and 
co-implemented by health systems, vulnerable 
populations, and other sectors to effectively  
incorporate local vulnerabilities, priorities, and  
strengths. This means that the specifics of an  
adaptation option, such as early warning and  
response systems or improvements to water,  
sanitation, and hygiene infrastructure, will vary from 
location to location. For example, indicators of the 
health risks of and capacity to respond to climate 
change in Nunavut, Canada, were selected taking into 
consideration the territory’s atmosphere, habitats, and 
peoples (Healey Akearok et al. 2019). Individuals from 
multiple sectors participated in a consensus-building 
process, identifying 20 indicators for environmental 
health, morbidity and mortality, population vulnerability, 
and mitigation, adaptation, and policies. The highest 
priority indicator was determined to be food security, 
including access to food and weather-related food 
shortages. Other priority indicators included mental 
health, specifically in terms of the incidence of 
depression and anxiety related to climate change, 
as well as the number of health surveillance systems 
related to climate change, numbers of injuries and 
deaths related to extreme weather events and to sea 
ice instability, the number of heatwave early warning 
systems, human cases of environmental infectious 
diseases such as Lyme disease, the vulnerability of 
elderly individuals living alone and other population 
groups susceptible to climate change impacts, the size 
of the public health workforce available and trained 
in the effects of climate change, indicators of water 
security and air quality, and the presence of harmful 
algal blooms and shellfish poisonings. There are still 
challenges when it comes to identifying indicators 
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warming scenarios. The SSP2 adaptation scenario 
assumes that current trends in adaptation continue, 
with medium challenges to adaptation and mitigation. 
Finally, the SSP3 scenario describes a world with a high 
level of challenges to adaptation and mitigation (Ebi 
et al. 2021a).

Figure 4.3 provides insight into possible limits for 
adaptation. For example, additional warming may lead 
to expansion or northern range shifts of tick species 
carrying vector-borne diseases such as Lyme disease 
and encephalitis, which, combined with underprepared 
or overburdened health systems, could lead to 
communities in certain regions being overwhelmed by 
disease outbreaks (Smith et al. 2014).

A key challenge for decision-makers is that health 
adaptation research tends to be organized by health 
outcome, yet health systems and communities will 
need to manage multiple health risks simultaneously. 
The challenge of managing multiple risks is increasingly 
difficult when risks are compounding and cascading, 
such as simultaneous heatwaves and drought 
or repeated floods. This challenge highlights the 
importance of bolstering both the emergency response 
and surge capacities of health systems. Therefore, 
additional research is needed to identify effective and 
feasible health adaptation measures that target multiple 
risks simultaneously, as well as appropriate strategies 
in instances where compounding or cascading risks are 
likely.

4.1.5 Critical next steps for adaptation

As highlighted in this chapter, there are very significant 
needs for research into and implementation of health 
adaptations across the Americas. There is a significant 
adaptation gap, given that recent and current funding 
amounts are well below the estimated levels required 
to minimize negative health outcomes (e.g. UNEP 
2018). Unless adaptation investments are considerably 
strengthened, the burden of climate-sensitive health 
outcomes will continue to increase with climate change. 
Adaptation is becoming a greater policy priority for 
many countries in the Americas, and, consequently, 
governments can more fully use the policies and 
strategies available at their disposal to reduce 
vulnerabilities and risk.

scenarios to inform policies and programs and to 
increase resilience in an uncertain future.

As temperature and precipitation patterns continue 
to change, numerous important thresholds could be 
crossed; for example, increased rainfall could result in 
significant increases in the geographical range of vectors 
carrying climate-sensitive infectious diseases. Similarly, 
outdoor workers are particularly vulnerable to global 
temperature increases, especially where they are already 
working at the limits of thermal tolerance for part of 
the year (Smith et al. 2014). Several Latin American 
countries could experience extreme heat conditions 
that exceed the threshold for safe moderate physical 
labor during the hottest month of the year if average 
global temperature increases exceed 2°C. This is likely to 
increase poverty and inequalities in health and wealth, 
as those in limited socioeconomic circumstances may be 
forced to accept unsafe, low-paying working conditions, 
further damaging their health and material resources 
(Andrews et al. 2018). Further, such increases could 
negatively impact agricultural practices by reducing 
crop yields and the available agricultural labor pool, 
resulting in potentially detrimental impacts on both the 
availability and quality of food (Smith et al. 2014).

Ebi et al. (2021a) applied a synthesis approach used in 
the IPCC assessment reports for health outcomes to 
illustrate how health risks are projected to change with 
further temperature increases under three adaptation 
scenarios (Figure 4.3). The health risks illustrated in 
the figure are heat-related morbidity and mortality; 
ozone-related mortality; malaria incidence rates; 
incidence rates of dengue and other diseases spread 
by Aedes spp. mosquitoes; Lyme disease; and West 
Nile fever. Adaptation can reduce the magnitude of 
risks as they continue to increase with climate change. 
Transitions from detectable and attributable risks to 
severe and widespread risks related to heat could 
manifest even at warming of less than 1.5°C above 
pre-industrial temperatures and will continue to develop 
at warming levels up to about 2.5°C, depending on 
the extent to which adaptation is proactive, timely, and 
effective. The Shared Socioeconomic Pathway SSP1 
adaptation scenario, which emphasizes international 
co-operation towards achieving sustainable 
development, has the greatest potential to avoid 
significant increases in risks under all but the highest 

Case Study 13 Climate–health education for health professionals

Health education programs have a responsibility to integrate climate–health teaching into curricula to equip current and future doctors, nurses, 
and public health practitioners with the knowledge and skills necessary to provide effective healthcare at a patient level within a changing 
climate (Leffers et al. 2017; Mantilla and Li 2019). In addition, climate–health education will expand the ability of health professionals to 
advocate for climate change research and policies that will benefit population health outcomes and improve the climate resiliency of healthcare 
systems (Adlong and Dietsch 2015; Leffers et al. 2017; Mantilla and Li 2019; Maxwell and Blashki 2016; Shaman and Knowlton 2018; Vogel 
2019; Wasco 2019; Yang et al. 2018).
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Given the urgent need to prepare health professionals to address climate–health impacts across the Americas, many national and international 
health associations, including the American Medical Association, the Canadian Public Health Association, and the International Council of 
Nurses, have called for the integration of climate–health education into health professional curricula (AACN 2011; AMA 2019; Buka and Shea 
2019; Castleden et al. 2020; CPHA 2019; Health Workforce Advocacy Initiative 2009; ICN 2008; Shea et al. 2020; Wellbery et al. 2018; WMA 
2009). Additionally, an editorial recently published in more than 200 medical and public health journals declared climate change to be the 
“greatest threat to global public health” and made a clear call for “emergency” responses (e.g. Atwoli et al. 2021). In 2015, 118 public health, 
medical, and nursing schools around the world, 103 of which are in the Americas, signed the Health Educators Climate Commitment agreeing 
to train the next generation of health professionals to address climate–health issues (The White House; Office of Press Secretary 2015). Despite 
this commitment, there remains a substantial gap in climate–health preparation for health professionals in the Americas (Bell 2010; Leffers et al. 
2017; Polivka et al. 2012; Shea et al. 2020; Silverman 2019; Trajber and Mochizuki 2015; Wellbery et al. 2018). For example, in 2019, less than 
3% of public health programs in the United States required a specific course on climate change, and less than 25% offered a climate–health 
elective opportunity (Silverman 2019). Similarly, in 2017, although half of medical schools in Colombia introduced a climate–health session 
into the curriculum, the topic was not prioritized and was not taught by qualified professionals (Mantilla and Li 2019). Therefore, health 
professionals across the Americas lack the preparedness and confidence to effectively assess, mitigate, and adapt to climate–health threats, 
which is recognized as one of the main barriers to optimizing the public health response to climate change (Bell 2010; Cabrera and Tomey 
2010; Castleden et al. 2020; Leffers et al. 2017; Maxwell and Blashki 2016; Polivka et al. 2012; Silverman 2019; Vogel 2019). 

Given this recognized gap, extensive literature has explored how to effectively incorporate climate–health education into health curricula (Bell 
2010; Castleden et al. 2020; Gehle et al. 2011; Jagals and Ebi 2021; Leffers et al. 2017; Maxwell and Blashki 2016; Shea et al. 2020). Key 
challenges to operationalizing climate–health education include a lack of faculty with climate–health expertise, limited curriculum-development 
funding, overcrowded curricula, institutional inertia and politics, and the absence of climate–health education as a strategic focus of institutions 
(Castleden et al. 2020; Gehle et al. 2011; Leffers et al. 2017; Maxwell and Blashki 2016; Shea et al. 2020; Trajber and Mochizuki 2015; Walpole 
et al. 2017; Wasco 2019; Yang et al. 2018). However, several educational strategies, frameworks, and resources have been developed to help 
overcome these barriers and facilitate the implementation of climate–health education (Cantell et al. 2019; Gehle et al. 2011; IFMSA 2016; 
Jagals and Ebi 2021; Leffers et al. 2017; Maxwell and Blashki 2016; Mckeown and Hopkins 2010; Teherani et al. 2017; Walpole et al. 2017; 
Wasco 2019). Common principles include the following:

• Integration into the existing curriculum: climate–health competencies could be feasibly integrated as cross-cutting themes into existing 
elements of health curricula (e.g. environmental health, social determinants of health) to enhance learning without requiring major changes 
in already overpacked curricula (Bell 2010; CFMS HEART 2020; Gehle et al. 2011; Leffers et al. 2017; Walpole et al. 2017; Wellbery et al. 
2018). 

• Application of climate–health knowledge: climate–health courses must extend beyond climate–health science and include problem 
solving, critical thinking, and practical competencies, so as to cultivate knowledgeable health professionals who are empowered as 
competent actors and leaders in climate change action (Bell 2010; Cantell et al. 2019; CFMS HEART 2020; Mckeown and Hopkins 2010; 
Shapiro Ledley et al. 2017; Silverman 2019; Vaughter 2016; Walpole et al. 2016; Yang et al. 2018). 

• Emphasis on self-efficacy: climate–health teaching should emphasize individuals’ capacity to achieve positive outcomes, as feelings of 
hope and efficacy are correlated with individuals’ likelihood to engage with climate change issues (Cantell et al. 2019; Castleden et al. 2020; 
Myers et al. 2012; Shapiro Ledley et al. 2017; Yang et al. 2018). 

• Regional considerations: climate–health curricula must reflect the regional variability of climate change impacts (Bell 2010; Cantell et al. 
2019; Castleden et al. 2020; Maxwell and Blashki 2016; Mckeown and Hopkins 2010; Silverman 2019). 

• Continuing education: climate–health resources must evolve with new evidence and emerging needs, and be available for established 
health practitioners as continuing professional education (Bell 2010; Maxwell and Blashki 2016; Teherani et al. 2017; Wellbery et al. 2018). 

• Collaboration and use of existing resources: implementing climate–health education amid resource constraints warrants inter-
institutional collaboration (CFMS HEART 2020; Madden et al. 2018; Mantilla and Li 2019; Shaman and Knowlton 2018; Shea et al. 2020). 
The Global Consortium on Climate and Health Education was established to enact the Health Educators Climate Commitment and to 
unite health professional schools worldwide by sharing best practices, core competencies, and free resources to build evidence-based 
climate–health curricula and training (Columbia University Mailman School of Public Health 2019). Additional curricular resources have 
been developed by health organizations across the Americas (ANHE 2016; CFMS HEART 2019; NHI). Institutions should capitalize on these 
available resources to facilitate and accelerate the implementation of climate–health education (Shea et al. 2020). 

Although climate change is the greatest health threat of the 21st century, action to address the threat is also one of the greatest public health 
opportunities (Watts et al. 2017). However, capitalizing on this opportunity will require health professionals to understand climate–health 
impacts and responses (Castleden et al. 2020; Leffers et al. 2017; Madden et al. 2018; Maxwell and Blashki 2016; Walpole et al. 2017; Yang 
et al. 2018). Therefore, it is imperative that programs for health professionals across the Americas continue to collaborate to establish robust 
climate–health curricula that will equip health professionals with the expertise to provide effective care for patients and lead action in climate 
change mitigation and adaptation (Castleden et al. 2020; Yang et al. 2018).
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Key drivers
Temperature trends; extreme temperatures
Key concerns
• Increases in heat-related morbidity & mortality are 
projected throughout the Americas, particularly in central 
North America and central/northern South America,
presenting increased challenges for adaptation
• Higher burden of impacts in lower socioeconomic 
settings
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Key drivers
Temperature trends; emissions & air pollutants
Key concerns
• Challenges to adaptation will be particularly notable 
in urban areas where smog and poor air quality are 
already present
• Improved air quality standards/regulation & 
enforcement are important strategies in responding to 
climate-related increases in ground-level ozone 

Key drivers
Temperature trends; precipitation changes; vector 
distribution changes
Key concerns
• Regional concerns particularly in Central America & 
parts of interior South America as length of
transmission season is projected to increase 
•Socioeconomic development, improved healthcare 
access, & vector control programs will be critical in 
adapting to climate-related changes in vector range 

Key drivers
Temperature trends; precipitation changes; vector 
distribution changes
Key concerns
• Northward expansion into southern United States,
increased cases in Mexico, and southward expansion 
in South America projected
• Socioeconomic development, improved healthcare 
access, & vector control programs will be critical in 
adapting to climate-related changes in vector range 

Key drivers
Temperature trends; precipitation changes; vector 
distribution changes
Key concerns
• Northward expansion of tick vector is projected,
particularly in southern and eastern Canada and some 
regions in the United States 
• Investments in public health education and 
surveillance may be able to delay increases in the 
burden of illness

Key drivers
Temperature trends; precipitation changes; vector 
distribution changes
Key concerns
• Infection rate & transmission season length projected 
to increase throughout North America, particularly 
northern & southern United States & Canadian Prairies
• Expansion into Central & South America is not well 
understood, underscoring need for surveillance 
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Adaptation scenario

Levels of risk/impact
VERY HIGH HIGH MODERATE UNDETECTABLE

Purple: Very high probability of severe impacts/risks & presence of significant irreversibility of the 
persistence of climate-related hazards, combined with limited ability to adapt due to the nature of
the hazards or impacts/risks

Adaptation scenario Adaptation scenario

Red: Significant & widespread impacts/risks attribuable to climate change.

Yellow: Impacts/risks are detectable & attributable to climate 
change with at least medium confidence

White: Undetectable impacts/risks attributable to climate change

Adaptation scenario Adaptation scenario Adaptation scenario

SSP= Shared Socioeconomic Pathway

Figure 4.3 Change in risks for six climate-sensitive health outcomes in the Americas by increases in temperature above pre-
industrial levels under three different adaptation scenarios (adapted from Ebi et al. 2021a).
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examples, we further outline the co-benefits of reduced 
air pollution, increased physical activity, and dietary 
changes, which are the most widely studied co-benefits 
to date. Furthermore, these climate actions are 
projected to result in some of the largest reductions in 
climate-sensitive health outcomes compared with other 
possible climate responses, although multiple strategies 
will be necessary and the most appropriate strategies 
will vary by time and location (Milner et al. 2020).

Coal phase-out has co-benefits for the environment and 
human health

Coal-fired power generation remains one of the largest 
sources of GHG emissions and other air pollutants 
globally (Oberschelp et al. 2019). Addressing the issue 
of coal-based power will therefore be essential to 
meeting global emission reduction targets. To align with 
the goals of the Paris Agreement, near total phase-out 
of coal-fired power plants, in combination with carbon 
sequestration efforts, must be achieved by 2050 (IPCC 
2018; Sampedro et al. 2021).

Although necessary to reduce global GHG emissions, 
coal phase-out will also have immense additional 
benefits due to the negative environmental implications 
of every stage of the coal continuum. Coal mining 
requires the use of heavy diesel-powered machinery; 
and in the case of surface coal mining, clearcutting of 
forests and the use of large quantities of explosives 

4.2 Mitigation options

4.2.1 Health co-benefits

Even if drastic and immediate actions are taken to meet 
current emissions targets, global warming is likely to 
exceed or “overshoot” 1.5°C. This will result in years, 
if not decades, of higher global temperatures before 
response efforts are able to stabilize temperatures at 
the 1.5°C level (IPCC 2021). There are clear benefits 
to meeting the emissions targets set out in the Paris 
Agreement, especially in terms of reducing health 
risks in the coming decades (see Chapter 3 and Case 
Study 14); however, decision-makers are often working 
within shorter time horizons, and therefore it can be 
helpful to recognize the nearer-term benefits of climate 
change action (Figure 4.4). Indeed, the near-term health 
benefits (co-benefits) of reducing emissions across 
sectors can provide important rationales for climate 
responses, and can substantially offset the costs for 
decision-makers to take more aggressive and immediate 
climate action (Chang et al. 2017; Haines 2017; Haines 
et al. 2009). For example, in the United States, where 
air pollution levels are relatively lower than in many 
other countries, emissions policies to limit warming 
to 2°C could prevent 175,000 premature deaths by 
2030, and 22,000 additional deaths annually thereafter 
(Shindell et al. 2016). In Mexico, climate change 
mitigation policies that reduce ozone and particulate 
matter could reduce mortality by 3,000 deaths per year 
(Crawford-Brown et al. 2012). Using case study 

Figure 4.4 Examples of how mitigation efforts can have immediate co-benefits for health in the Americas (adapted from Hess 
et al. 2020).
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are common, which degrade the environment and 
contribute to air pollution (Hendryx et al. 2020; Palmer 
et al. 2010). Coal processing creates large volumes 
of chemically contaminated wastewater, which, if 
managed incorrectly, can permeate local water supplies 
(Hendryx et al. 2020). Burning coal for electricity 
production releases air pollutants including CO2, 
sulfur dioxide (SO2), nitrogen oxides (NOx), and other 
particulate matter (Hendryx et al. 2020; Oberschelp 
et al. 2019). Finally, coal ash, the waste product from 
coal burning, contains radioactive elements and heavy 
metals that can have long-lasting impacts on the 
environment (Hendryx et al. 2020). For example, coal 
combustion is the second-highest source of mercury 
exposure worldwide (after small-scale and artisanal 
mining) (EPA 2021).

Each stage of the continuum from extraction to coal 
ash disposal poses important health risks through air, 
soil, and water pollution. Studies have associated coal 
mining processes with increased all-cause mortality 
and elevated incidences of cardiovascular disease, 
respiratory disease, lung cancer, and negative infant 
and child health outcomes (Kravchenko and Lyerly 
2018), highlighting the co-benefits of coal phase-out for 
human health in addition to the environmental benefits. 
Research has shown that phasing out the most polluting 
coal plants (top 10% of polluters globally) could reduce 
related health impacts by up to 64% (Oberschelp et al. 
2019), whereas cancelling all newly proposed coal 
projects could lead to 210,000 fewer premature deaths 
per year related to air quality by 2030 (Sampedro et al. 
2021).

The co-benefits of coal phase-out are highly relevant 
for the Americas. The United States is one of the largest 
producers of coal-fired electricity, ranking as the world’s 
third-largest producer in 2018 (Watts et al. 2021). Other 
countries, including Chile and Guatemala, also have 
more than 25% of their total electricity generation 
sourced from coal (Watts et al. 2021). Importantly, 
however, investments in new coal capacity are declining 
in some regions; for example, compared with 2006 
levels, new investments have decreased by 50% and 
95% in Brazil and the United States, respectively, (Watts 
et al. 2021). Continued divestment and phase-out of 
coal will have important implications for human health 
in the Americas. For instance, in the Appalachia region 
of the eastern United States, mountaintop removal 
mining (a form of surface coal mining) has become 
increasingly common since the 1990s (Hendryx et al. 
2020). Research studies and systematic reviews have 
documented increased violations of water quality 
(Hendryx et al. 2012) and the negative physical and 
mental health impacts for residents living near surface 
mines in Appalachia (Boyles et al. 2017). Reductions in 
mining activities may, therefore, improve the health and 
water security of Appalachian communities. In northeast 

Brazil, a cost–benefit analysis found that stricter PM10 
(particulate matter of sub-10 μm size) guidelines for 
coal plants would result in health-related cost savings 
far greater than the costs of emissions controls, 
demonstrating the potential benefits of coal phase-out 
not only for ecosystems and human health, but for 
economies as well (Howard et al. 2019).

Changing transportation systems have co-benefits for 
human health

Road traffic accounts for approximately three-quarters 
of transport-related emissions, and these emissions, 
which are the fastest-rising within the energy-using 
sectors, are projected to increase by 80% by 2030 
(IPCC 2014b). Therefore, reducing emissions from 
road traffic will be critical to meet the Paris Agreement 
goals. Possible mitigation measures include promoting 
bicycle and foot travel, encouraging carpooling, building 
effective public transit infrastructure, and expanding 
electric vehicle use. These mitigation actions can have 
important health co-benefits, including increased 
physical activity, lower morbidity and mortality due to 
reduced air pollution, and reduced risk of road traffic 
injuries. In particular, the health benefits of increased 
walking and cycling are substantial, and have been 
associated with significant reductions in the prevalence 
of ischemic heart disease, cerebrovascular disease, 
depression, dementia, and diabetes (Woodcock et al. 
2009, 2018). Recognition of these health co-benefits 
has led to efforts to expand, improve, and create safe 
urban environments for active travel (Milner et al. 2020; 
Watts et al. 2021).

A study in the Midwestern United States found that 
riding a bicycle rather than using a car for short-distance 
trips could result in decreased air pollution, increased 
levels of physical activity, and reduced healthcare 
costs (Grabow et al. 2012). There have been several 
initiatives throughout the Americas to promote active 
travel, such as bicycle lanes that transform city streets 
into safe and vehicle-free spaces for residents to use 
for recreational and transportation purposes. A study 
assessing the health and economic benefits of bicycle 
lanes across 15 Latin American cities (INSPIRES 2020) 
reported significant reductions in annual mortality and 
morbidity from certain diseases (i.e. cardiovascular 
diseases, type 2 diabetes, cancer, and dementia), in 
addition to economic benefits. A study in São Paulo 
(SP 2040) examining different transportation scenarios 
for the city found that increased levels of walking and 
cycling and lower levels of car and motorcycle use 
would confer substantial health benefits, particularly 
from reduced heart disease as a result of increased 
physical activity and reduced air pollution (Hérick de Sá 
et al. 2017). Conversely, a scenario favoring private cars 
resulted in worse health outcomes, including increased 
road injuries (Hérick de Sá et al. 2017). Improving 
public transportation systems improves social cohesion 
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to US$93 billion per year (Hallström et al. 2017). In 
Canada, the updated Food Guide promotes a lower 
emissions diet, serving as a tool to help consumers make 
healthy and environmentally sustainable food choices 
(Government of Canada 2019). However, in addition to 
guidelines at the individual level, system-level changes 
and government support will be needed to drive 
large-scale change.

When discussing the benefits of more sustainable, 
lower-emission diets at a global scale, it is important to 
consider these diets in the context of equity and diverse 
geographical and socioeconomic conditions. Dietary 
transitions may not look the same, or be appropriate, in 
all settings. At the core of more sustainable and healthy 
diets is the intensified production of plant-based, 
nutrient-dense foods, which are more expensive to 
produce than many other foods with lower nutrient 
density, such as refined sugars and oils (Hirvonen et al. 
2020). Although generally affordable in high income 
nations, diets such as the EAT-Lancet reference diet1 are 
estimated to exceed household income per capita for 
more than 1.5 billion people in low and middle income 
countries (Hirvonen et al. 2020). Therefore, considerable 
attention must be given to improving income status 
and nutritional supports and lowering the costs of 
nutrient-dense plant-based foods in low and middle 
income settings, so that diets such as the EAT-Lancet 
reference diet can be feasible at a global scale. There 
are also specific issues of affordability and equity in 
the Americas, as 11.6% of people in Latin America 
and the Caribbean live on a daily income lower than 
the cost of the EAT-Lancet reference diet, compared 
with 1.2% of people in North America (Hirvonen et al. 
2020). Furthermore, dietary transitions may not be 
appropriate for some populations, such as Indigenous 
Peoples and those living in remote communities. For 
instance, commercially produced foods must be flown 
into remote communities in the Canadian Arctic, 
contributing to emissions and resulting in added costs 
for consumers (ITK 2019). Inuit in Northern Canada rely 
heavily on subsistence hunting and the consumption of 
local country foods, which are nutrient-dense, preferred, 
and vital to cultural and community wellbeing, in 
addition to having a lower emissions impact than 
commercial foods (ITK 2019; QIA 2019). It is therefore 
critical to consider the context-specific nature of 
sustainable and healthy diets to avoid unintended 
consequences (e.g. the health and environmental 
impacts of ultra-processed foods (Seferidi et al. 2020)).

To support relevant and appropriate dietary transitions, 
commitment and effective governance will be needed  
at national and international scales to refocus food 

and supports efforts to reduce inequities by improving 
mobility and access to services for those who would 
otherwise have fewer travel options (Watts et al. 2021). 
As such, expanding equitable and green transportation 
initiatives not only has important co-benefits for climate 
change and health but also provides opportunities for 
advancing the SDGs.

Low emission diets can have co-benefits for human 
health

The food production system contributes an estimated 
20–30% of global GHG emissions, and thus represents 
a critical area of focus for mitigation efforts (Guillaumie 
et al. 2020; Vermeulen et al. 2012). In addition to 
emissions from food production, processing, and 
distribution, agricultural practices contribute to 
large-scale environmental stress and degradation; for 
example, up to 80% of global water use is attributed 
to the agricultural sector (Jägerskog and Jønch Clausen 
2012). It has become increasingly clear that food 
system transitions are needed to reduce environmental 
impacts and meet the emissions targets set by the Paris 
Agreement. Livestock production, particularly red meat 
production, contributes substantially to GHG emissions, 
far exceeding the emissions impacts associated with 
plant-based food products (Gerber et al. 2013; Poore 
and Nemecek 2018; Springmann et al. 2016a). 
Argentina, Brazil, and the United States are some of the 
largest producers and consumers of red meat globally 
(OECD 2021), emphasizing the importance of food 
system transitions in the Americas.

Importantly, evidence also points to health co-benefits 
of “low emission diets”, which contain fewer animal 
products and more nutrient-dense plant-based foods 
(Mbow et al. 2019). The diets of many people living 
in high income nations are high in ultra-processed 
foods with inadequate consumption of fruits and 
vegetables (Guillaumie et al. 2020). However, studies 
have found that healthier diets low in red and processed 
meats and high in fruits, vegetables, and legumes are 
associated with reduced premature deaths and lower 
risks of developing conditions such as cardiovascular 
disease, coronary heart disease, type 2 diabetes, 
and colorectal cancer (Aleksandrowicz et al. 2016; 
Hallström et al. 2017; Jarmul et al. 2020; Mbow et al. 
2019; Springmann et al. 2018). Other research has 
found that the adoption of a healthy diet lower in 
red and processed meats reduces the relative risk of 
coronary heart disease and colorectal cancer in the 
United States by 20–45% (Hallström et al. 2017). 
These risk reductions can also result in substantial 
economic benefits by reducing healthcare costs by up 

1 A “universal” healthy reference diet based on dietary patterns, food types, and health outcomes in the scientific literature, developed by the EAT-
Lancet Commission. The reference diet incorporates many vegetables, fruits, whole grains, legumes, nuts, and unsaturated oils; modest amounts 
of poultry and seafood; and little-to-no red and processed meats, refined grains, added sugar, or vegetables high in starch (Willett et al. 2019).
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are inspired by natural environments (ECDG 2015). 
Examples in urban settings include green roofs, parks, 
wetland development for flood control, and other forms 
of environmental restoration and protection. There have 
also been examples of social and nature “prescribing” 
in the Americas, which involves health professionals 
proposing nature-based activities in response to physical 
and mental health challenges. These “prescriptions 
for nature” can include activities such as community 
gardening and nature walking groups, which are 
supported by research that demonstrates the health 
benefits of green time and spaces (Sherman et al. 
2021).

These projects can directly help to mitigate climate 
hazards such as flooding or extreme heat, and may also 
provide additional economic, social, and health benefits. 
In their review, van den Bosch and Ode Sang (2017) 
found that nature-based solutions may contribute to 
improved public health in many ways, including the 
following: (i) stress reduction and improved mental 
health and wellness; (ii) increased physical activity 
resulting in a reduced burden of overweight/obesity 
and cardiovascular disease; (iii) decreased heat-related 
morbidity and mortality due to mitigation of heat island 
effects; (iv) improved reproductive health and childbirth 
outcomes; and (v) reductions in all-cause mortality. 
Moreover, by preventing illness and reducing the need 
for healthcare services, nature-based solutions not only 
confer economic benefits through reduced healthcare 
expenditures but also result in emission reductions 
within the healthcare sector (ECDG 2015; MacKinnon 
et al. 2019; van den Bosch and Ode Sang 2017). It is 
important to note, however, that some nature-based 
solutions do have limits in their ability to protect human 
health. For example, although urban forests can make 
important reductions in local ambient temperatures 
by several degrees, during extreme heatwaves this 
temperature reduction may be insufficient to protect 
human health.

Transforming cities to achieve net zero emissions can 
protect human health

Widespread transformation in all sectors and at all 
scales is needed to reach a net zero economy. As 
global urbanization increases, opportunities exist to 
accelerate this transformation through city planning 
that simultaneously considers economic, social, health, 
and environmental needs and aligns with the SDGs for 
building sustainable cities (United Nations 2020). Given 
the scale and pace of the necessary transformation, 
coordination efforts aligning city governance, 
infrastructure development, technological and social 
innovations, and behavioral change are essential. 
Importantly, these changes must draw on scientific 
evidence and must be implemented considering both 
bottom-up and top-down approaches in different 
contexts (Crane et al. 2021).

systems on the production of nutrient-dense foods  
with lower environmental impacts (Willett et al. 2019). 
This transition will involve innovation and investment 
along the food production, processing, and distribution 
chain. In addition, opportunities to diversify protein 
sources and reduce red meat consumption must be 
identified wherever feasible. In Canada, promoting 
poultry-based animal proteins over those from beef 
and pork could satisfy nutritional protein requirements 
while reducing emissions from livestock production by 
up to 31% (Dyer et al. 2020). Food waste reduction 
will also be critical in improving food production 
efficiency, reducing the impacts of food waste on 
energy consumption and landfills, and aligning with 
Sustainable Development Goal 12: Responsible 
production and consumption (Vermeulen et al. 2012; 
Willett et al. 2019). Research in the United States 
suggests that shifting towards more sustainable diets 
while simultaneously addressing food waste could not 
only reduce food production-related emissions by 11%, 
but would also have additional positive impacts for 
emissions related to land use and land fill (Birney et al. 
2017). Importantly, context, affordability, and other 
issues of equity must be kept at the core of all response 
options and impact assessments.

Decarbonizing the healthcare sector can improve and 
protect human health

The healthcare sector contributes approximately 4.4% 
of total GHG emissions (Karliner et al. 2019), with the 
United States and Canada among the top 10 emitting 
nations globally (Pichler et al. 2019). These emissions 
are predominantly derived from energy use in health 
centers and from supply chain activities, including 
the manufacture, transport, and disposal of medical 
products, pharmaceuticals, and equipment (Karliner 
et al. 2019; Salas et al. 2020a).

Given the goal of the healthcare sector to improve 
and protect health, as well as the health co-benefits of 
mitigating climate change, the sector faces increasing 
calls to achieve net zero emissions by: (i) reducing 
consumption within healthcare facilities and promoting 
cultures of awareness and sustainability; (ii) advocating 
and investing in renewable energy at local and national 
scales; (iii) decarbonizing the supply chain; and (iv) 
prioritizing disease prevention to reduce overall reliance 
on the healthcare sector (Karliner et al. 2019; Salas et al. 
2020a). Importantly, decision-makers and governments 
will play a vital role in supporting the healthcare sector 
in the development and implementation of net zero 
emissions plans (EASAC and FEAM 2021).

Nature-based adaptation and mitigation solutions can 
have co-benefits for human health

Nature-based solutions refer to an array of adaptation 
and/or mitigation responses to climate change that 
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2020). Plans to meet these demands must consider 
the ecological impacts of mining as well as the social 
challenges and potential conflicts related to mine and 
resource management, and should include elements 
aimed at improving supply chain efficiency and recycling 
(Giurco et al. 2019; Sovacool et al. 2020).

4.2.3 How will socioeconomic development shape 
future scenarios?

The climate change research community has developed 
tools known as Shared Socioeconomic Pathways (SSPs) 
to examine how future socioeconomic developments 
may influence climate change impacts, mitigation, and 
adaptations, including at the climate–health nexus. 
Social development modifies levels of exposure and 
vulnerability to climate hazards through processes 
such as strengthened governance and climate policies, 
advances in technologies, better infrastructure and 
built environments, and advances in education, gender 
equity, and other SDGs (Ebi et al. 2014). Different 
SSPs represent alternative futures, in which these 
scenarios of development either increase or decrease 
climate–health risks and challenges to mitigation and 
adaptation. Five SSP narratives have been developed, 
qualitatively describing a set of the most to least 
optimistic development pathways (O’Neill et al. 2017; 
Sellers 2020).

Importantly, SSPs are a tool that help decision-makers 
assess the impacts of development on different 
mitigation and adaptation responses, which is 
imperative given the wide array of potential approaches 
to adaptation and mitigation in the Americas and 
globally (O’Neill et al. 2020). Regions that undergo 
different development pathways will have differing 
capacities to implement emissions reduction and/or 
adaptation strategies (O’Neill et al. 2014) For instance, 
under SSP5, investments in health, education, and 
other social capital may result in fewer challenges to 
adaptation, although continued heavy reliance on fossil 
fuels to grow economies will result in challenges for 
mitigation through emission reductions (O’Neill et al. 
2017).

Decision-makers in government, and increasingly in 
other sectors, require clear and relevant response 
option assessments to make recommendations about 
specific mitigation and adaptation policies and about 
programming to protect health. To add additional 
layers of information, SSPs can also be integrated 
with other models of future policy assumptions and 
climate projections, such as the SSP-RCP frameworks 
(O’Neill et al. 2020). For example, the relationship 
between the incidence of mosquito-borne illnesses, 
which are of particular relevance to Latin America, and 
climate change-related temperature increases will not 
necessarily be linear due to the important role of other 
factors such as infection and pest control programs, 

4.2.2 Health benefits and trade-offs

Health benefits and trade-offs of energy-efficient 
buildings

Energy-efficient homes and buildings have several 
direct and indirect impacts on health. For instance, 
properly insulated buildings with adequate heating 
and/or cooling systems reduce potential morbidities 
and mortality linked to extreme cold and heat, 
whereas effectively maintained gas heating systems 
can reduce the risk of carbon monoxide leaks and 
related illnesses or deaths (Kuholski et al. 2010; Levy 
et al. 2003). Energy-efficient homes provide indirect 
benefits through lower utility bills, reducing financial 
strain on low-income households and thus decreasing 
the risk of health outcomes related to food insecurity 
and the inability to pay for essential medical services 
(Brown et al. 2020; Kuholski et al. 2010). In addition, 
research in the United States has shown that retrofitting 
homes for improved energy efficiency can significantly 
reduce annual air pollutants, substantially lowering 
respiratory morbidity and mortality and resulting in 
billions of dollars in healthcare and economic savings 
(Levy et al. 2003). However, it is also important 
to consider potential trade-offs when designing 
energy-efficient buildings; for example, inadequate 
ventilation in well-sealed buildings can worsen the 
indoor environment and contribute to mold growth 
and poor air quality (Ahmad et al. 2017; Ortiz et al. 
2020). Furthermore, there must be government policies 
that support retrofitting buildings for low-income 
households, who are often at higher risk of heat-related 
mortality and morbidity.

Trade-offs in the food production and renewable energy 
sectors

Land allocation for food, biofuels, and mining can 
create competition between sectors, so decision- 
makers must consider potential trade-offs and other 
unintended consequences of all mitigation and 
adaptation response options. Feeding an estimated 
population of 10 billion people by 2050 will require 
a transformation of the food system, as well as 
consideration of key trade-offs in sustainability, food 
safety, and food security (Vågsholm et al. 2020). 
Reducing post-harvest food loss and food waste, 
which may account for approximately one-third of all 
foods produced globally each year, is one of the most 
impactful ways to improve the sustainability of food 
systems and decrease demand on agricultural/livestock 
land use (FAO 2011, 2019). Reducing alternative uses 
of agricultural land is also critical, given increasing land 
demands for biofuels in the renewable energy sector 
(Goswami and Choudhury 2019). Trade-offs in the 
renewable energy sector are becoming more evident 
as the demands for lithium, copper, cobalt, silver, and 
other rare-earth elements increase to meet battery and 
renewable energy production needs (Sovacool et al. 
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the ways in which these factors interact are complex 
and highly dependent on location and population 
characteristics (Smith et al. 2014). For example, the 
priorities, decisions, and allocation of resources by local 
governments have a direct impact on the populations 
under their administration (Bowen et al. 2012; Ebi 
2020), but those decisions and their impacts may look 
very different depending on geography and on the 
physical and financial resources available. Baseline levels 
of health outcomes and disease risk are also considered 
to be among the most important drivers of current and 
future vulnerability in all populations: in areas already 
experiencing a high burden of climate-sensitive illness, 
an increase in disease risk will have a much more 
profound impact than a similar risk increase in an area 
with low baseline levels of disease (Smith et al. 2014).

Although climate change has consequences for all 
people globally, it is important to highlight the fact  
that some populations, for a variety of reasons, are 
more vulnerable to the health impacts of climate  
change than others. These disparities must be 
recognized and prioritized in climate change mitigation 
and adaptation responses to avoid deepening existing 
health inequities.

poverty reduction, and future land-use changes (Ebi 
et al. 2018a; Wilbanks and Ebi 2014). Therefore, SSPs in 
combination with RCP projections can provide valuable 
information on the ways in which the burden of 
vector-borne diseases could be altered under different 
socioeconomic pathways and for specific climate 
scenarios (Wilbanks and Ebi 2014). Indeed, many 
mortality outcomes are at least partly dependent on 
trajectories of mitigation and adaptation capacity, and 
understanding how future mortality burdens are likely to 
change with socioeconomic development will be critical 
in making decisions about the allocation of resources 
(Sellers 2020).

4.3 On whom should decision-makers focus?

Climate change affects the health of everyone. 
Although the nature and scale of climate hazards 
vary by location, climate change affects people in 
high, middle, and low income countries across all 
socioeconomic conditions, livelihoods, and cultures. 
Several factors are generally considered to increase 
climate-related health risks, including biological and 
physiological factors, current health status, social 
and economic conditions, and governance, although 

Case Study 14 Scorecard analysis: Health content in the Nationally Determined Contributions

In response to the ambitious goal of the Paris Agreement to restrict global temperature increases to below 1.5 or 2°C, countries have made 
climate commitments in the form of Nationally Determined Contributions (NDCs) (GCHA 2021). Governmental commitments, as outlined in 
their respective NDCs, have been evaluated and ranked through the Global Climate & Health Alliance Healthy NDCs Scorecard analysis (GCHA 
2021). The evaluation criteria included the extent to which NDCs considered and incorporated human health impacts, health in climate change 
adaptation initiatives, health co-benefits, health with respect to finance and economics, and general consideration and inclusion of health 
(GCHA 2021). The NDC Scorecards also included a Climate Action Tracker rating for some countries, which evaluated the climate change 
ambition of each respective country on the basis of certain factors, such as national climate change policy, commitments to reducing emissions, 
and climate change finance (Climate Action Tracker 2021; GCHA 2021). It is important to highlight that “low and middle income countries 
secured the top scores” despite “hav[ing] contributed least to the emissions responsible for climate change” (GCHA 2021).

In North America, the United States received the lowest overall score of 6/15, whereas Canada and Mexico received overall scores of 7/15 and 
10/15, respectively. The United States was found to be on track for 3°C of warming and received a Climate Action Tracker rating of Insufficient, 
with Canada and Mexico, on track for 4°C of warming, being rated as Highly Insufficient (Climate Action Tracker 2021; GCHA 2021). Although 
all three countries received the highest possible scores in the health co-benefits category (3/3), the overall levels of warming projected for each 
country exceed the tolerable thresholds established in the Paris Agreement and are likely to be to be catastrophic for human health in the 
longer term (GCHA 2021).

In Central America, Costa Rica, Panama, Honduras, Belize, and Nicaragua received NDC Scorecard rankings. Costa Rica’s NDC received a score 
of 13/15, which is the highest for all evaluated countries in the Americas, with full scores in all health categories except for economics and 
finance, which received a score of 1/3 (GCHA 2021). Overall, Costa Rica was the only country in the Americas to receive the second-highest 
Climate Action Tracker rating of Almost Sufficient, as it is on track to limit warming to 2°C (Climate Action Tracker 2021; GCHA 2021). Panama 
received an overall score of 12/15, followed by Belize and Honduras, which both received scores of 9/15. The lowest score was given to 
Nicaragua (5/15) (GCHA 2021).

For countries in the Caribbean, NDC Scorecard rankings ranged from 4/15 to 10/15. Scores were given to the Dominican Republic (10/15), Saint 
Lucia (6/15), Grenada (5/15), Jamaica (5/15), Antigua and Barbuda (4/15), Barbados (4/15), and Cuba (4/15) (GCHA 2021). These countries have 
not received Climate Action Tracker ratings (GCHA 2021).

In South America, Columbia (12/15), Argentina (11/15), Chile (10/15), and Paraguay (9/15) all received NDC Scorecard rankings of 9 or higher 
(GCHA 2021), whereas Suriname (4/15), Peru (2/15), and Brazil (0/15) received scores below 5 (GCHA 2021). None of the South American 
countries included in the Climate Action Tracker analysis were compliant with the Paris Agreement (i.e. have adequate climate ambition to limit 
warming to 1.5°C). In terms of the Climate Action Tracker ratings, Brazil, Argentina, and Columbia were rated as Highly Insufficient, as they 
are on track for 4°C of warming, whereas Peru and Chile, on track for 3°C of warming, were rated as having Insufficient climate change action 
(Climate Action Tracker 2021; GCHA 2021). 
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Study 12. There is clear evidence that some of the 
most effective adaptation responses in Indigenous 
nations are underpinned by Indigenous knowledge, are 
systemic in nature, and address political and economic 
inequities. Critically, recognition of Indigenous Rights, 
including Indigenous self-determination in climate 
change research, response, and governance, as well 
as adequate funding and resources will be essential to 
effectively reduce climate–health risks for Indigenous 
Peoples (Case Study 12).

4.3.5 Those living in challenging socioeconomic 
settings

At individual, household, and national scales, those 
living in more challenging socioeconomic settings are 
more vulnerable to the negative health consequences of 
climate change (Smith et al. 2014). Those with access 
to fewer socioeconomic resources may be less able to 
prevent or respond to climate hazards (e.g. less able 
to access to air conditioning to prevent heat-related 
morbidity and mortality) (Ostro et al. 2010), whereas 
at a national level, regions with fewer public services 
can result in increased susceptibility in the general 
public. Ethnicity also has important implications 
for socioeconomic-related vulnerabilities, as many 
marginalized and racialized communities continue to 
face disproportionate burdens of illness that are often 
rooted in injustice and inequities, as well as reduced 
access to healthcare and other essential services 
(Ostro et al. 2010; Zimmerman and Anderson 2019). 
In the United States, “redlining” is the “historical 
practice of refusing home loans or insurance to whole 
neighborhoods based on a racially motivated perception 
of safety for investment” (Hoffman et al. 2020). 
Hoffman et al. (2020) found that 94% of formerly 
redlined areas had temperatures as much as 7°C higher 
than their non-redlined neighbors, emphasizing the role 
that policies, racism, and other social factors can play in 
creating disproportionate exposures to climate change.

4.3.6 Geographically vulnerable populations

Geography impacts vulnerability through differing 
exposures to climate hazards and access to 
climate-resilient infrastructure and health services. 
Certain locations face particularly high risks from 
specific climate hazards; for instance, the North 
American Arctic is experiencing warming at a faster 
rate than more southern regions, exposing populations 
living in the Arctic to increased risks from sea ice 
reductions and permafrost thawing (Larsen et al. 2014). 
Meanwhile, low-lying coastal and island populations 
face particularly high risks from worsening storms, 
hurricanes, and flooding. Severe hurricanes have an 
enormous economic impact, particularly for small island 
nations in the Caribbean, where economic losses from 
natural disasters can far exceed national annual gross 
domestic product (Ötker and Srinivasan 2018). Remote 

4.3.1 Aging populations

Older individuals typically have a reduced ability to avoid 
and/or respond to physiological stressors, including 
temperature extremes, physical injuries, and infectious 
diseases (Gamble et al. 2013). Moreover, socio-cultural 
factors play an important role in increasing vulnerability 
in older people: for instance, in some cultures it is 
common for older people to live alone, often with 
reduced sources of income, resulting in increased 
isolation and a limited ability to receive assistance from 
social contacts or other service providers (Gamble et al. 
2013; Smith et al. 2014). In Latin America and the 
Caribbean, the proportion of the population over age 
65 is expected to grow from the current 9% to over 
30% by 2100 (ECLAC - UN 2019), highlighting the 
need for improving availability and access to healthcare 
infrastructure for the aging population.

4.3.2 Children

Children are highly susceptibility to certain 
climate-sensitive health outcomes, such as infectious 
diseases and extreme heat. Pneumonia and 
diarrheal illness remain leading causes of mortality 
in the Americas, particularly in the middle and low 
income nations, representing 14% of child deaths 
in 2015 (PAHO 2017). Food insecurity also tends to 
disproportionately impact households with children, 
leading to important short- and long-term health 
impacts from inadequate nutrition in childhood (Smith 
et al. 2014).

4.3.3 Gender

Gender can impact the opportunities and resources 
people have to cope with and adapt to climate change, 
with disproportionate disadvantages typically being 
experienced by women and girls (Vincent et al. 2014). 
For example, traditional gender roles can put women 
and girls at an increased risk of exposure to, and 
mortality from, certain climate hazards (WHO 2011), 
while also reducing their ability to adapt to climate 
change due to limited economic resources and social 
exclusion (Vincent et al. 2014). Additionally, more work 
is needed to understand the intersection of climate 
change with LGBTQ2S+ peoples, as well as non-binary/
gender-fluid peoples.

4.3.4 Indigenous Peoples

Indigenous Peoples are disproportionately impacted 
by climate change because of several factors that are 
rooted in past and ongoing impacts of colonialism, 
exclusion, racism, and marginalization (Anderson 
et al. 2016; IPCC 2018, 2019a, 2019b; Status of 
Tribes and Climate Change Working Group 2021; 
Whyte 2016; Whyte et al. 2021b). Climate–health 
impacts, vulnerability, and resiliency in the context 
of Indigenous Peoples are discussed in depth in Case 
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• How are the adverse impacts and benefits of 
climate change currently distributed (Adger et al. 
2006)? How are they likely to be distributed in the 
future? How will the distribution of impacts likely 
affect human health?

• How do these impacts intersect with existing 
insecurities and vulnerabilities facing vulnerable 
populations or groups (Adger et al. 2006)? How are 
these impacts likely to intersect with vulnerabilities 
in the future?

• How are the capabilities of individuals to maintain 
good health, wellbeing, and the ability and 
freedom to live as they choose being impacted by 
climate change (Nussbaum 2000; Pressman and 
Summerfield 2002; Schlosberg 2007; Wolff 2019)? 
How might these capabilities be impacted in the 
future? Which individuals, groups, or populations 
are likely shoulder the greatest burden of these 
impacts?

• Is climate adaptation assistance being distributed 
fairly? Are those who are the most vulnerable to 
climate change impacts prioritized in adaptation 
initiatives, plans, and interventions (Adger et al. 
2006)?

• Do the potential negative consequences of 
mitigation actions outweigh the benefits? 
Are the negative consequences of mitigation 
disproportionately shouldered by some individuals, 
communities, or nations?

2. Address issues of climate justice with respect to 
fair procedures and recognition.

It would be prudent for decision-makers to consider 
issues of climate justice with respect to fair procedures 
and recognition (Anderson 1999; Schlosberg 2007) by 
answering the following questions for all climate change 
actions:

• Are any individuals and/or groups not recognized 
as being equal in relation to one another (Anderson 
1999)? Are cultural differences recognized and 
respected?

• Does a lack of recognition for certain groups 
or individuals impede their participation in 
decision-making and institutional processes 
(Schlosberg 2007)? Do any groups or individuals 
face barriers to participating in decision-making 
processes? If so, how might these barriers be 
eliminated?

• To what extent are individuals and groups able to 
shape the decisions that impact them (Coggins 
et al. 2021b)?

• Are decision-making and institutional processes 
equitable and just (Schlosberg 2007)?

populations are also typically more vulnerable to climate 
hazards due to reduced access to climate-resilient health 
infrastructure and public services. For example, residents 
of some communities in Northern Canada are required 
to fly to the nearest urban center for specialized health 
services, presenting barriers to accessing healthcare and 
other essential services (ITK 2014).

4.4 Equity in all climate–health actions

The significance of incorporating justice and equity 
in responses to climate change impacts has been 
emphasized in IPCC reports and international treaties, 
including the Paris Agreement (de Coninck et al. 2018; 
Roy et al. 2018; UNFCCC 2015). Climate change 
impacts are distributed unfairly, and they further 
exacerbate insecurities and injustices that are already 
affecting vulnerable populations, many of which are 
founded in historical injustices such as colonialism, 
racism, oppression, and development challenges (Adger 
et al. 2006; Coggins et al. 2021b). For Indigenous 
Peoples in the Americas, recognizing, reaffirming, and 
upholding Rights (e.g. the United Nations Declaration 
on the Rights of Indigenous Peoples) are critical for 
successful responses to climate change. It has been 
argued that the integrity and legitimacy of decisions 
made by governing bodies in response to climate 
change rely on the extent to which equity and justice 
are incorporated into decision-making processes 
and their respective outcomes (Adger et al. 2006). 
Here, we present an overview of key climate justice 
considerations following the broad classifications of 
distributional, capabilities, procedural, and recognition 
aspects of justice theory (Schlosberg 2007). Singular 
approaches to justice (e.g. focusing exclusively on 
distributional justice) are often insufficent, as many 
different forms of injustice may be in play in any given 
situation (Coggins et al. 2021a). Including a balance 
of these four interconnected aspects allows for a more 
comprehensive justice approach (Coggins et al. 2021a; 
Schlosberg 2007). These categories of justice have 
been used widely; however, given the complexity and 
diversity of justice conceptualizations in the literature, it 
is acknowledged that there may be definitions of justice 
that do not fit precisely into these classifications, as well 
as opportunities for further distinctions within each 
category (Coggins et al. 2021a). We apply this climate 
justice framework by focusing on the climate–health 
context and present these considerations as questions.

1. Address issues of climate justice with respect to 
fair distributions and capabilities.

Decision-makers should consider issues of climate justice 
with respect to fair distributions (Adger et al. 2006) and 
capabilities (Nussbaum 2000, 2007; Nussbaum and Sen 
1993; Pressman and Summerfield 2002; Schlosberg 
2007; Sen 1985, 1999a, 1999b) by answering the 
following questions for all climate change actions:
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5 What are this report’s conclusions and recommendations?

5.1 What do we know and why are we 
concerned?

The global climate is changing, and it is attributable 
to human activities. Throughout this report, we have 
assessed and synthesized the available evidence to 
understand the climate–health nexus in the Americas, 
from which we have arrived at the following key 
conclusions:

• Climate change is already impacting human 
health in the Americas. Climate–health research 
in the Americas demonstrates that across South, 
Central, and North America, people are already 
experiencing the health impacts of climate change.

• Climate change is already impacting 
everyone, everywhere—but the magnitude 
and distribution of impacts vary. Certain 
populations face increased vulnerability to climate 
change and experience a disproportionate burden 
of health impacts because of several biological, 
social, and geographical factors. Older individuals, 
children, women and girls, Indigenous Peoples, 
those living in challenging socioeconomic settings, 
and geographically vulnerable populations face 
additional health risks and challenges related to 
climate change.

• Every degree of heating matters in the 
Americas. This reiterates the importance of taking 
all actions possible to limit warming well below 
2°C in accordance with the Paris Agreement. It 
is clear from the evidence-based data that health 
risks will be substantially lower in the Americas at 
1.5°C degrees compared with 2°C of warming, and 
the capacity of individuals, communities, health 
systems, and governments to adapt is reduced with 
every increment of additional warming (IPCC 2018).

• Equity is at the core of effective responses. 
Socially, politically, and geographically excluded 
groups are at the highest risk of health impacts 
from climate change but are not adequately 
represented in the evidence base, which has 
implications for effective policy-making. These 
inequitable health risks and exclusions from climate 
change responses persist in the Americas. Equity 
must be at the forefront of future research and 
policy responses from local to international scales.

• Actions taken now to build climate–health 
resilience in the Americas will limit future 
risks. Investing in climate-resilient infrastructure, 
programming, and healthcare systems will support 

adaptation and reduce future health risks from 
climate change. Conducting vulnerability and 
adaptation assessments, integrating health into 
Nationally Determined Contributions, and investing 
in climate–health education are examples of 
immediate actions that policy-makers can take.

• Climate change and health considerations must 
be integrated into educational opportunities. 
It is imperative that programs across the Americas 
continue to collaborate to establish robust climate–
health curricula to equip health professionals with 
the necessary expertise to provide effective patient 
care and lead action in climate change mitigation 
and adaptation.

• A “health in all policies” approach will support 
adaptation, mitigation, and health co-benefits. 
Climate change affects many aspects of human 
health and wellbeing; consequently, health must 
be considered in all aspects of the climate change 
response. A “health in all policies” response will 
not only support climate change adaptation and 
mitigation actions to meet the goals of the Paris 
Agreement but will also have co-benefits for 
health and will support the achievement of key 
international initiatives such as the SDGs.

• Research momentum in the Americas 
must continue to build. The climate–health 
literature in the Americas is growing, yet it is 
still understudied compared with other areas of 
climate research (Harper et al. 2021a; Hosking 
and Campbell-Lendrum 2012; Verner et al. 2016). 
Continued efforts to build the evidence base are 
needed, particularly for regions of the Americas that 
are currently underrepresented in the literature.

• Cross-sectoral collaboration is needed. Filling 
research gaps and acting on the current evidence 
base will require intersectional, intersectoral, and 
interdisciplinary approaches (Levy et al. 2018) that 
bring together microbiologists, epidemiologists, 
social scientists, ecologists, environmental 
scientists, engineers, economists, demographers, 
urban and rural planners, and climatologists with 
decision-makers from the Americas and beyond (Lo 
Iacono et al. 2017; Mellor et al. 2016).

• Climate change intersects with, and 
exacerbates, other global challenges. The 
COVID-19 pandemic highlights intersections 
between climate, the environment, and society, 
and demonstrates how these factors can contribute 
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environmental standards. For example, research  
has shown that stricter air quality standards 
(i.e. beyond current WHO guidelines) have 
health and economic benefits, resulting in fewer 
hospitalizations and lower healthcare spending 
(Howard et al. 2019).

• The climate–health evidence base adds value to 
local and national climate assessments. In the 
Americas, some countries have conducted national 
vulnerability and adaptation assessments (Berry 
et al. 2018), and as more nations work to undertake 
such assessments, access to the best available 
climate–health evidence will be vital.

• A “health in all policies” approach ensures 
that issues of equity remain at the forefront of 
climate response discussions, and it promotes 
engagement with different audiences in climate–
health discussions (Case Study 15). Critically, care 
must be taken to avoid diluting responsibility and 
diminishing the quality of responses when health 
and equity considerations are mainstreamed into 
decision-making.

to the exacerbation of existing health and social 
inequities. COVID-19 also provides us with 
important lessons about responding to grand 
global challenges through co-operation and rapid 
mobilization at a large scale (Belesova et al. 2020; 
Klenert et al. 2020; Krieger 2020).

5.2 Building and utilizing the evidence base

5.2.1 Engaging with the climate–health evidence 
base to shape policy

Utilizing the evidence base to promote a “health in 
all policies” approach will result in more relevant, 
sustainable, and effective climate response actions. Such 
an approach will include the following benefits:

• Integrating health impact assessments into all 
potential response options allows decision-makers 
to weigh the health benefits, risks, unintended 
consequences, and trade-offs of different 
approaches.

• A “health in all policies” approach can be 
used to inform the assessment and revision of 

Case Study 15 Youth engagement in climate action in the Americas

Young people are proving to be key players in the climate–health nexus by responding to climate risks in diverse and unique ways. From 
organizing events, such as summits, marches, and school strikes, to designing innovative resources to build knowledge and skills, they are 
mobilizing and turning their concerns about climate change into collaborative action. Indeed, it is critical to recognize youth as climate leaders, 
not simply as a group to be consulted and engaged.

Across the Americas, youth organizations are urging their governments to implement climate-related policies. For example, the International 
Indigenous Youth Council, created through the efforts of womxn and two-spirit peoples during the Standing Rock Indigenous Uprising in 2016, 
is using education, spiritual practices, and civic engagement to strive towards a sustainable future. The power of youth voices is also evident in 
other stories of successful government lobbying. For example, in 2018, the Supreme Court sided with youth plaintiffs in Colombia, supporting 
their argument that deforestation and increasing temperatures threatened their constitutional rights to a healthy environment, life, health, 
food, and water. In 2019, Jóvenes por el Clima lobbied the Argentinian Government to declare a Climate and Ecological Emergency and enact 
the first Climate Change Law.

Peer-support groups provide resources for youth who are feeling emotionally burdened by the climate crisis. For example, the Community 
Climate Council based in the Regional Municipality of Peel, Ontario, is hosting Climate Change Cafés, which are virtual spaces where youth can 
meet and discuss anxiety and grief related to climate change. Another initiative is the Fraser Basin Council’s “My Climate Story” project, which, 
in addition to providing toolkits and educational resources, allows young people to share stories of climate anxiety including those related to 
health. In 2021, the Royal Society of Canada and Let’s Talk Science announced a partnership to engage over 600,000 youth across Canada in 
climate science education and action through events, action projects, and digital resources.

Young people are also using their voices to address the intersectionality of the climate crisis. For example, Climate in Colour highlights systemic 
racism in climate movements, offering workshops on environmental racism, environmental justice, and the colonial history of climate. In Latin 
America and the Caribbean, the Sail for Climate Action movement involved a group of young people sailing to Europe, striving to have their 
voices represented in decision-making spaces. Their journey included capacity-building and knowledge sharing programs, and was meant to 
end at the 52nd session of the subsidiary bodies to the UNFCCC in Germany before being interrupted by COVID-19.

To support these and other important climate-related initiatives that young people are championing, decision-makers can take several actions:

• Engage young people early in decision-making efforts. 

• Provide young people with platforms to express their concerns and incorporate their health priorities into climate-related policies and 
programs.

• Invest in youth-designed and youth-led initiatives. Consult young people and provide them with the capital and resources they need to 
mobilize and respond to climate–health impacts.

• When consulting with young people, prioritize Indigenous and other frequently excluded voices who may be disproportionately impacted by 
climate–health risks.

https://indigenousyouth.org/
https://indigenousyouth.org/
https://www.ourchildrenstrust.org/colombia-global-summary
http://jovenesporelclima.com/
https://www.communityclimatecouncil.org/climate-cafe
https://www.communityclimatecouncil.org/climate-cafe
https://fbc-bc.maps.arcgis.com/apps/MapSeries/index.html?appid=952ad7f7b56e4564a8b5f672f6a1c969
https://rsc-src.ca/en/news/covid-19/rsc-lets-talk-science-partnership-announcement
https://letstalkscience.ca/about-us/news-and-media/government-canada-invests-in-lets-talk-science
https://www.climateincolour.com/
https://only.one/series/sail-for-climate-action(modal:post/a-voyage-interrupted-but-not-deterred)
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gaps. Critical to more equitable geographical coverage 
of research is improving funding mechanisms for the 
Caribbean, Central America, and South America. 
The available funding is too often skewed towards 
mitigation, despite the clear benefits of research 
focusing on adaptation in many low and middle income 
countries.

More research is needed to connect climate change 
impacts with adaptation and mitigation options

Much of the climate–health literature to date is focused 
on current health impacts. This provides important 
baseline information, which must be continuously built 
upon to improve our understanding of the available 
mitigation and adaptation options and the implications 
of those options across climate-sensitive health 
outcomes in the Americas.

Future research must be self-determined and led by 
vulnerable populations to address and prevent health 
inequities

As is evident from this report, certain populations are 
at greater risk for experiencing the health impacts of 
climate change; however, research and responses often 
do not adequately consider socially, geographically, 
economically, and politically marginalized groups. 
Additional research will be important for informing 
responses that approach climate–health mitigation and 
adaptation through a health equity and justice lens. 
Such research will also contribute to global initiatives 
such as the SDGs and the World Health Organization 
goal of establishing universal healthcare by 2030 
(United Nations 2020; WHO and World Bank Group 
2019). It will be critical to provide the resources and 
support needed for communities to self-determine 
research priorities, processes, and responses, especially 
regarding the risks of climate change for Indigenous 
Peoples’ health.

5.2.3 The ongoing role of IANAS and other 
Academy networks

Academy networks, such as IANAS, play an important 
role in building the climate–health evidence base; 
however, the responsibilities of academic networks 
extend beyond the development of research knowledge, 
and include the following important roles:

• Providing objective information that is independent 
of political and commercial interests.

• Engaging with governments, organizations, 
media outlets, and public audiences to convey 
information and actively counter misinformation 
and misinterpretation of data.

• Providing a platform that brings together global 
experts and promotes cross-sectoral collaboration 
and innovation.

5.2.2 Synthesis of evidence and identification of 
knowledge gaps

Research based on rigorous, transparent, and 
multidisciplinary methods is, and must continue to 
be, at the core of the climate–health evidence base. 
However, the increasing number of publications on 
climate change and health (Berrang-Ford et al. 2021b) 
means that decision-makers and researchers must sort 
through large amounts of information, presenting 
barriers to effective action (Ebi et al. 2018a; Hosking 
and Campbell-Lendrum 2012; Verner et al. 2016). Thus, 
the information we have provided in this report can 
serve as a useful synthesis tool to inform action and 
future research based on themes identified in the report, 
including the following areas:

More research is needed to project future climate–health 
impacts in the Americas

Although a growing body of literature examines 
current health impacts related to environmental and 
climatic factors, there is a notable lack of projection 
research across many of the health outcomes assessed 
in this report. Climate–health projections in future 
research projects must consider demographic changes, 
socioeconomic factors, social development, and 
adaptation interventions that are likely to change 
over time and across locations. Given the complex 
interactions between non-climatic factors and 
climate-sensitive health outcomes, such considerations 
will be essential in modelling future trends.

An increased focus on understudied health outcomes is 
needed

Some climate-sensitive health outcomes remain 
relatively understudied in the Americas. For example, 
a relatively small base of literature exists in North 
America examining mental health outcomes, nutrition, 
injuries, and aeroallergens compared with other health 
outcomes such as heat-related morbidity and mortality 
and respiratory illness (Harper et al. 2021a).

Additional research is needed to fill gaps in the 
Caribbean, Central America, and South America

Published literature on climate change and health is 
heavily focused on North America, and particularly 
the United States. It is evident from this report that 
research gaps exist in the Caribbean, Central America, 
and South America, representing an important area of 
future focus. Filling these locational gaps will be critical 
for establishing baseline information on context-specific 
exposure–response relationships, developing regionally 
specific projections, and informing relevant mitigation 
and adaptation responses for these regions. Supporting 
interdisciplinary efforts, implementing data-sharing 
agreements, and expanding regional research resources 
and collaborations will be key to addressing these 
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• Inquiry Based Science Education: Promoting 
changes in science teaching in the Americas (IANAS 
2017b);

• A Framework for K-12 Science Education: Practices, 
crosscutting concepts, and core ideas (National 
Research Council of the National Academies 2012).

Important next steps following this report include using 
the findings to engage with regional decision-makers. 
There will also be a subsequent global report that 
synthesizes findings and key messages from each of the 
InterAcademy Partnership regional reports, including 
IANAS (the Americas), NASAC (Africa), EASAC (Europe), 
and AASSA (Asia).

• Working with partners to establish future research 
priorities and calls for funding.

IANAS plays a critical role by engaging with local, 
national, and international communities both within 
and outside the Americas to communicate research 
findings and priorities. Moreover, IANAS and its member 
academies have developed several frameworks and 
agendas focused on improving scientific communication 
and educational engagement with science, including 
the following:

• Communicating Science Effectively: A Research 
Agenda (National Academies of Sciences, 
Engineering, and Medicine 2017);
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